作為一名教師,我們必須按照教學(xué)要求來制定教案,只有在認(rèn)真分析了教學(xué)目標(biāo)后動(dòng)筆,我們寫出的教案才有意義,下面是范文社小編為您分享的解方程例4教案5篇,感謝您的參閱。
解方程例4教案篇1
科目
數(shù)學(xué)
年級(jí)
九年級(jí)
教學(xué)時(shí)間
一課時(shí)
學(xué)習(xí)者分析
本班有學(xué)生53人,數(shù)學(xué)課還比較喜歡,學(xué)習(xí)熱情也較高,課堂氣氛比較活躍。學(xué)生在學(xué)過一元一次方程的基礎(chǔ)上學(xué)習(xí),還是對(duì)方程有一定的認(rèn)識(shí)。所以老師放手讓學(xué)生自學(xué)、合作的探究方式來學(xué)習(xí)此課。但有極少部分學(xué)生較懶,學(xué)習(xí)習(xí)慣差,不愿思考問題??傮w來說學(xué)生喜歡動(dòng)手操作,喜歡小組合作的學(xué)習(xí)方式。
教學(xué)目標(biāo)
一、情感態(tài)度與價(jià)值觀
1. 通過生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的問題來激發(fā)學(xué)生的學(xué)習(xí)熱情。
2. 感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性。
二、過程與方法
1. 通過觀察,歸納一元二次方程概念的教學(xué)
2. 使學(xué)生理解并能夠掌握一元二次方程的一般表達(dá)式以及各種特殊形式。
三、知識(shí)與技能
1. 通過設(shè)置問題,建立數(shù)學(xué)模型,模仿一元一次方程的概念給一元二次方程下定義。
2. 一元二次方程的一般形式及其有關(guān)概念
教學(xué)重點(diǎn)、難點(diǎn)
1.一元二次方程的概念及其一般形式和用一元二次方程有關(guān)概念解決問題。
2.通過提出問題,建立一元二次方程的數(shù)學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念。
教學(xué)資源
⑴每位學(xué)生制作一個(gè)無蓋方盒
⑵每人一份印刷練習(xí)題
⑶教師自制的多媒體課件
⑷上課環(huán)境為多媒體大屏幕環(huán)境
教學(xué)活動(dòng)
教學(xué)活動(dòng)1
??師生互動(dòng),激趣導(dǎo)入
情境創(chuàng)設(shè)(大屏幕投影教材24頁):要設(shè)計(jì)一座2米高的人體雕塑,使雕塑的上部(腰上部)與下部(腰下部)的高度比,等于下部與全部(全身)的高度比,雕塑的下部應(yīng)設(shè)計(jì)為多高?
學(xué)生根據(jù)等量關(guān)系:設(shè)雕塑下部高xm,于是得方程
x2=2(2-x)整理得x2+2x-4=0,這是什么方程,與以前學(xué)過的一元一次方程有什么不同,這節(jié)課我們就來學(xué)習(xí)它---------一元二次方程
教學(xué)活動(dòng)2
??問題啟發(fā),合作探究
1.問題1(多媒體課件)有一塊長(zhǎng)方形鐵皮,長(zhǎng)100cm,寬50cm,在它的四角各切去一個(gè)同樣的正方形,然后將四周突出部分折起,就能制作一個(gè)無蓋方盒。如果要制作的無蓋方盒的底面積為3600cm2,那么鐵皮各角應(yīng)切去多大的正方形?
學(xué)生結(jié)合手中學(xué)具思考怎么列方程
如果假設(shè)切去的正方形邊長(zhǎng)為x,那么盒底的長(zhǎng)是________,寬是_____,根據(jù)方盒的底面積為3600cm2,得:_______.
整理,得:________.
老師點(diǎn)評(píng)并分析如何建立一元二次方程的數(shù)學(xué)模型,并整理.
2.(出示排球邀請(qǐng)賽圖片)
問題2要組織一次排球邀請(qǐng)賽,參賽的每?jī)蓚€(gè)隊(duì)之間都要比賽一場(chǎng)。根據(jù)場(chǎng)地和時(shí)間等條件,賽程計(jì)劃安排7天,每天安排4場(chǎng)比賽,比賽組織者應(yīng)邀請(qǐng)多少個(gè)隊(duì)參賽?
單循環(huán)比賽是指就表示每個(gè)隊(duì)要和其他所有的隊(duì)都賽到了,如果有4個(gè)隊(duì)總共賽_______場(chǎng),5個(gè)隊(duì)呢?8個(gè)隊(duì)呢?n個(gè)隊(duì)呢?
同學(xué)們用基本線段法和定點(diǎn)發(fā)射法總結(jié)規(guī)律:
場(chǎng)數(shù)=隊(duì)數(shù)×(隊(duì)數(shù)-1)÷2
場(chǎng)數(shù)=(隊(duì)數(shù)-1)+(隊(duì)數(shù)-2)+(隊(duì)數(shù)-3)+。。。。。。+1
列方程得x(x-1)÷2=28?整理得x2-x=56解方程可以得出參賽隊(duì)數(shù)。
3.學(xué)生活動(dòng),敘述概念
請(qǐng)口答下面問題.
(1)上面三個(gè)方程整理后含有幾個(gè)未知數(shù)?
(2)按照整式中的多項(xiàng)式的規(guī)定,它們最高次數(shù)是幾次?
(3)有等號(hào)嗎?或與以前多項(xiàng)式一樣只有式子?
老師點(diǎn)評(píng):(1)都只含一個(gè)未知數(shù)x;(2)它們的最高次數(shù)都是2次的;(3)都有等號(hào),是方程.
因此,像這樣的方程兩邊都是整式,只含有一個(gè)未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程.
一般地,任何一個(gè)關(guān)于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a≠0).這種形式叫做一元二次方程的一般形式.
一個(gè)一元二次方程經(jīng)過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項(xiàng),a是二次項(xiàng)系數(shù);bx是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng).
4.追問條件,由一般式得出特殊式
(1)為什么a≠0?b和c能等于0嗎?(2)特殊式:ax2+bx=0,ax2+c=0
教學(xué)活動(dòng)3
?? 例題示范,鞏固提高
例1.將方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并寫出其中的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).
分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必須運(yùn)用整式運(yùn)算進(jìn)行整理,包括去括號(hào)、移項(xiàng)、合并同類項(xiàng)等.
解:去括號(hào),得:
40-16x-10x+4x2=18
移項(xiàng),得:4x2-26x+22=0
其中二次項(xiàng)系數(shù)為4,一次項(xiàng)系數(shù)為-26,常數(shù)項(xiàng)為22.
例2.(學(xué)生活動(dòng):請(qǐng)二至三位同學(xué)上臺(tái)演練)??將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并寫出其中的二次項(xiàng)、二次項(xiàng)系數(shù);一次項(xiàng)、一次項(xiàng)系數(shù);常數(shù)項(xiàng).
鞏固練習(xí)
教材p27?練習(xí)1、2(每組出三名同學(xué)在四周黑板寫出,分六組)
教學(xué)活動(dòng)4
??自我檢查,信息反饋
自我測(cè)試設(shè)計(jì)
一、選擇題(5×4=20分)
1.在下列方程中,一元二次方程的個(gè)數(shù)是(??).
①3x2+7=0??②ax2+bx+c=0??③(x-2)(x+5)=x2-1???④3x2-?=0
a.1個(gè)????b.2個(gè)????c.3個(gè)????d.4個(gè)
2.方程2x2=3(x-6)化為一般形式后二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)分別為(?).
a.2,3,-6????b.2,-3,18????c.2,-3,6?????d.2,3,6
3.px2-3x+p2-q=0是關(guān)于x的一元二次方程,則(??).
a.p=1?????b.p>0?????c.p≠0?????d.p為任意實(shí)數(shù)
4.關(guān)于x的方程(m2-4)x2+mx-m=0是一元二次方程的條件是()
a.m≠0????b.m≠2???c.m=?-2 d.m≠±2
二、填空題(4×5=20分)
1.方程3x2-3=2x+1的二次項(xiàng)系數(shù)為________,一次項(xiàng)系數(shù)為_________,常數(shù)項(xiàng)為_________.
2.關(guān)于x的方程(a-1)x2+3x=0是一元二次方程,則a的取值范圍是_________
3.關(guān)于x的方程(m+1)xm-1+mx-1=0是一元一次方程,則m=________
三.應(yīng)用題(20分)
?九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?”
大意是說:已知長(zhǎng)方形門的高比寬多6尺8寸,門的對(duì)角線長(zhǎng)1丈,那么門的高和寬各是多少?
如果假設(shè)門的高為x尺,那么,這個(gè)門的寬為_______尺,根據(jù)題意,得________.
整理、化簡(jiǎn),得:__________.
程序?:1.學(xué)生自己獨(dú)立完成2.老師給組長(zhǎng)副組長(zhǎng)打分3.組長(zhǎng)給組員打分4.學(xué)生交流疑難雜癥5.學(xué)生總結(jié)易錯(cuò)點(diǎn)和方法6.老師作最后強(qiáng)調(diào)。
教學(xué)活動(dòng)5
??歸納總結(jié),暢談收獲
本節(jié)課要掌握:
(1)???????一元二次方程的概念;
(2)???????一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次項(xiàng)、二次項(xiàng)系數(shù),一次項(xiàng)、一次項(xiàng)系數(shù),常數(shù)項(xiàng)的概念及其它們的運(yùn)用.
(3)???????定義要條件化:二次項(xiàng)系數(shù)不等于0的條件
(4)???????利用一元二次方程解決實(shí)際生活問題。
教學(xué)活動(dòng)6
??拓展遷移,提升能力
例3.求證:關(guān)于x的方程(m2-8m+17)x2+2mx+1=0,不論m取何值,該方程都是一元二次方程.
分析:要證明不論m取何值,該方程都是一元二次方程,只要證明m2-8m+17≠0即可.
證明:m2-8m+17=(m-4)2+1
∵(m-4)2≥0
∴(m-4)2+1>0,即(m-4)2+1≠0
∴不論m取何值,該方程都是一元二次方程.
解方程例4教案篇2
學(xué)習(xí)目標(biāo)
1、 會(huì)設(shè)未知數(shù),并利用問題中的相等關(guān)系 列方程,且正確求解
2、 會(huì)用一元一次方程解決工程問題
重點(diǎn)難點(diǎn)
重點(diǎn):建立一 元一次方程解決 實(shí)際問題
難點(diǎn):探究實(shí)際問題與一元一次方程的關(guān)系
教學(xué)流程
師生活動(dòng) 時(shí)間
復(fù)備標(biāo)注
一、 復(fù)習(xí):
解下列方程:
1.9-3y=5y+5
2、
二、新授
例5 整理 一批圖書,由一個(gè)人做要40小時(shí)完成。現(xiàn)在計(jì)劃由一部 分人先做4小時(shí),再增加2人和他們一起做8小時(shí),完成這項(xiàng)工作。假設(shè)這些人的工作效率相同,具體應(yīng)安排多少人工作?
分析:這里可以把總工作量看做1。思考
人均效率(一個(gè)人做1小時(shí)完成的工作量)為 。
由x人先做4小時(shí),完成的工 作量為 。再增加2人和前一部分人一起做8小時(shí),完成的工作量為 。
這項(xiàng)工作分兩 段完成,兩段完成的工作量之和為 。
解:設(shè)先安排x人工作4小時(shí)。
根據(jù)兩段工作量之和應(yīng)是總工作量,得
?
去分母, 得 4x+8(x+2)=-1701
去括號(hào),得 4x+8x+16=40
移項(xiàng)及合并同類項(xiàng),得
12x=24
系數(shù)化為1,得 x=-243.
所以 -3x=729
9x=-2187.
答:這三個(gè)數(shù)是-243,729,-2187。
師生小結(jié):對(duì)于規(guī)律問題,首先找到各個(gè)數(shù)之間的關(guān)系,發(fā)現(xiàn)規(guī)律,在根據(jù)問題找等量關(guān)系,設(shè)未知數(shù),列方程,解方程,解答實(shí)際 問題。轉(zhuǎn)化為方程來解決
例4 根據(jù)下面的兩種移動(dòng)電話計(jì)費(fèi)方式表,考慮下列問題。
方式一 方 式二
月租費(fèi) 30元/月 0
本地通話費(fèi) 0.30元/月 0.40元/分
(1)一個(gè)月內(nèi)在本地通話20 0分和350分,按方式一需交費(fèi)多少元?按方式二呢?
(2)對(duì)于某個(gè)本地通話時(shí) 間,會(huì)出現(xiàn)按兩種計(jì)費(fèi)方式收費(fèi)一樣多嗎?
解:(1)
方式一 方式二
200分 90元 80元
350分 135元 140元
( 2)設(shè)累計(jì)通話t分,則按方式一要收費(fèi)(30+0.3t)元,按方式二要收費(fèi)0.4t元。如果兩種計(jì)費(fèi)方式的收費(fèi)一樣,則
0.4t=30+0.3t
移項(xiàng),得 0. 4t -0.3t =30
合并同類項(xiàng),得 0.1t=30
系數(shù)化為1,得 t=300
由上可知,如果一個(gè)月內(nèi)通話300分,那么兩種計(jì)費(fèi)方式相同。
思考:你知道怎樣選擇計(jì)費(fèi)方式更省錢嗎?
解后反思:對(duì)于有表格實(shí)際問題,首先讀清表格提供的信息,再根據(jù)問題找等量關(guān)系,設(shè)未知數(shù),列方程,解方程,以求出問題的解。也就是把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題。
歸納:用一元一次方程分析和解決實(shí)際問題的基本過程如下
三、鞏固練習(xí):94頁9、10
四、達(dá)標(biāo)測(cè)試 :《名校》55頁1.2.3.
五、課堂小結(jié):
(1) 這節(jié) 課我有哪些收獲?
(2) 我應(yīng)該注意什么問題?
六、作業(yè): 課本第94頁第9題 學(xué)生作業(yè),教師巡視幫助需要幫助的學(xué)生。在學(xué)生解答后的講評(píng)中圍繞兩個(gè)問題:
(1)每一步的依據(jù)分別是什么?
(2)求方程的解就是把方程化成什么形式?
先讓學(xué)生讀題分析規(guī)律,然后教師進(jìn)行引導(dǎo):
允許學(xué)生在討論后再回答。
在學(xué)生弄清題意后,教師引導(dǎo)學(xué)生說出規(guī)律,設(shè)一個(gè)未知數(shù),表示其余未知數(shù)
學(xué)生獨(dú)立解方程方程的解是不是應(yīng)用題的解
教師強(qiáng)調(diào)解決 問題的分析思路
學(xué)生讀題,分析表格中的信息
教 師根據(jù)學(xué)生的分析再做補(bǔ)充
學(xué)生思考問題
教師根據(jù)學(xué)生的解答,進(jìn)行規(guī)范分析和解答
解方程例4教案篇3
有些數(shù)量關(guān)系比較復(fù)雜的應(yīng)用題,用算術(shù)方法求解比較困難。此時(shí),如果能恰當(dāng)?shù)丶僭O(shè)一個(gè)未知量為x(或其它字母),并能用兩種方式表示同一個(gè)量,其中至少有一種方式含有未知數(shù)x,那么就得到一個(gè)含有未知數(shù)x的等式,即方程。利用列方程求解應(yīng)用題,數(shù)量關(guān)系清晰、解法簡(jiǎn)潔,應(yīng)當(dāng)熟練掌握。
例1商店有膠鞋、布鞋共46雙,膠鞋每雙7.5元,布鞋每雙5.9元,全部賣出后,膠鞋比布鞋多收入10元。問:膠鞋有多少雙?
分析:此題幾個(gè)數(shù)量之間的關(guān)系不容易看出來,用方程法卻能清楚地把它們的關(guān)系表達(dá)出來。
設(shè)膠鞋有x雙,則布鞋有(46-x)雙。膠鞋銷售收入為7.5x元,布鞋銷售收入為5.9(46-x)元,根據(jù)膠鞋比布鞋多收入10元可列出方程。
解:設(shè)有膠鞋x雙,則有布鞋(46-x)雙。
7.5x-5.9(46-x)=10,
7.5x-271.4+5.9x=10,
13.4x=281.4,
x=21。
答:膠鞋有21雙。
分析:因?yàn)轭}目條件中黃球、藍(lán)球個(gè)數(shù)都是與紅球個(gè)數(shù)進(jìn)行比較,所以
答:袋中共有74個(gè)球。
在例1中,求膠鞋有多少雙,我們?cè)O(shè)膠鞋有x雙;在例2中,求袋中共有多少個(gè)球,我們?cè)O(shè)紅球有x個(gè),求出紅球個(gè)數(shù)后,再求共有多少個(gè)球。像例1那樣,直接設(shè)題目所求的未知數(shù)為x,即求什么設(shè)什么,這種方法叫直接設(shè)元法;像例2那樣,為解題方便,不直接設(shè)題目所求的未知數(shù),而間接設(shè)題目中另外一個(gè)未知數(shù)為x,這種方法叫間接設(shè)元法。具體采用哪種方法,要看哪種方法簡(jiǎn)便。在小學(xué)階段,大多數(shù)題目可以使用直接設(shè)元法。
例3某建筑公司有紅、灰兩種顏色的磚,紅磚量是灰磚量的2倍,計(jì)劃修建住宅若干座。若每座住宅使用紅磚80米3,灰磚30米3,那么,紅磚缺40米3,灰磚剩40米3。問:計(jì)劃修建住宅多少座?[
分析與解一:用直接設(shè)元法。設(shè)計(jì)劃修建住宅x座,則紅磚有(80x-40)米3,灰磚有(30x+40)米3。根據(jù)紅磚量是灰磚量的2倍,列出方程
80x-40=(30x+40)×2,
80x-40=60x+80,
20x=120,
x=6(座)。
分析與解二:用間接設(shè)元法。設(shè)有灰磚x米3,則紅磚有2x米3。根據(jù)修建住宅的座數(shù),列出方程。
(x-40)×80=(2x+40)×30,
80x-3200=60x+1200,
20x=4400,
x=220(米3)。
由灰磚有220米3,推知修建住宅(220-40)÷30=6(座)。
同理,也可設(shè)有紅磚x米3。留給同學(xué)們做練習(xí)。
例4教室里有若干學(xué)生,走了10個(gè)女生后,男生是女生人數(shù)的2倍,又走了9個(gè)男生后,女生是男生人數(shù)的5倍。問:最初有多少個(gè)女生?
分析與解:設(shè)最初有x個(gè)女生,則男生最初有(x-10)×2個(gè)。根據(jù)走了10個(gè)女生、9個(gè)男生后,女生是男生人數(shù)的5倍,可列方程
x-10=[(x-10)×2-9]×5,
x-10=(2x-29)×5,
x-10=10x-145,
9x=135,
x=15(個(gè))。
例5一群學(xué)生進(jìn)行籃球投籃測(cè)驗(yàn),每人投10次,按每人進(jìn)球數(shù)統(tǒng)計(jì)的部分情況如下表:
還知道至少投進(jìn)3個(gè)球的人平均投進(jìn)6個(gè)球,投進(jìn)不到8個(gè)球的人平均投進(jìn)3個(gè)球。問:共有多少人參加測(cè)驗(yàn)?
分析與解:設(shè)有x人參加測(cè)驗(yàn)。由上表看出,至少投進(jìn)3個(gè)球的有(x-7-5-4)人,投進(jìn)不到8個(gè)球的有(x-3-4-1)人。投中的總球數(shù),既等于進(jìn)球數(shù)不到3個(gè)的人的進(jìn)球數(shù)加上至少投進(jìn)3個(gè)球的人的進(jìn)球數(shù),
0×7+1×5+2×4+6×(x-7-5-4)
= 5+8+6×(x-16)
= 6x-83,
也等于進(jìn)球數(shù)不到8個(gè)的人的進(jìn)球數(shù)加上至少投進(jìn)8個(gè)球的人的進(jìn)球數(shù),[ 3×(x-3-4-1)+8×3+9×4+10×1,
= 3×(x-8)+24+36+10
= 3x+46。
由此可得方程
6x-83=3x+46,
3x=129,
x=43(人)。
例6甲、乙、丙三人同乘汽車到外地旅行,三人所帶行李的重量都超過了可免費(fèi)攜帶行李的重量,需另付行李費(fèi),三人共付4元,而三人行李共重150千克。如果一個(gè)人帶150千克的行李,除免費(fèi)部分外,應(yīng)另付行李費(fèi)8元。求每人可免費(fèi)攜帶的行李重量。
分析與解:設(shè)每人可免費(fèi)攜帶x千克行李。一方面,三人可免費(fèi)攜帶3x千克行李,三人攜帶150千克行李超重(150-3x)千克,超重行李每千克應(yīng)付4÷(150-3x)元;另一方面,一人攜帶150千克行李超重(150-x)千克,超重行李每千克應(yīng)付8÷(150-x)元。根據(jù)超重行李每千克應(yīng)付的錢數(shù),可列方程
4÷(150-3x)=8÷(150-x),
4×(150-x)=8×(150-3x),
600-4x=1200-24x,
20x=600,
x=30(千克)。
練習(xí)23
還剩60元。問:甲、乙二人各有存款多少元?
有多少溶液?
3.大、小兩個(gè)水池都未注滿水。若從小池抽水將大池注滿,則小池還剩5噸水;若從大池抽水將小池注滿,則大池還剩30噸水。已知大池容積是小池的1.5倍,問:兩池中共有多少噸水?
4.一群小朋友去春游,男孩每人戴一頂黃帽,女孩每人戴一頂紅帽。在每個(gè)男孩看來,黃帽子比紅帽子多5頂;在每個(gè)女孩看來,黃帽子是紅帽子的2倍。問:男孩、女孩各有多少人?
5.教室里有若干學(xué)生,走了10個(gè)女生后,男生人數(shù)是女生的1.5倍,又走了10個(gè)女生后,男生人數(shù)是女生的4倍。問:教室里原有多少個(gè)學(xué)生?
含金多少克?
7.一位牧羊人趕著一群羊去放牧,跑出一只公羊后,他數(shù)了數(shù)羊的只數(shù),發(fā)現(xiàn)剩下的羊中,公羊與母羊的只數(shù)比是9∶7;過了一會(huì)跑走的公羊又回到了羊群,卻又跑走了一只母羊,牧羊人又?jǐn)?shù)了數(shù)羊的只數(shù),發(fā)現(xiàn)公羊與母羊的只數(shù)比是7∶5。這群羊原來有多少只?
解方程例4教案篇4
教學(xué)內(nèi)容:教科書第13~14頁,“練習(xí)與應(yīng)用”第5~7題,“探索與實(shí)踐”第8~9題及“與反思”。
教學(xué)目標(biāo):
1、通過練習(xí)與應(yīng)用,使學(xué)生進(jìn)一步掌握列方程解決實(shí)際問題的方法與步驟,提高列方程解決實(shí)際問題的意識(shí)和能力。
2、通過小組合作,進(jìn)一步培養(yǎng)學(xué)生探索的意識(shí),發(fā)展思維能力。
3、通過與反思,使學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣,獲得成功體驗(yàn),增強(qiáng)學(xué)好數(shù)學(xué)的信心。
教學(xué)過程:
一、練習(xí)與應(yīng)用
1、談話引入這節(jié)課我們繼續(xù)對(duì)列方程解決實(shí)際問題進(jìn)行練習(xí)。板書課題。
2、指導(dǎo)練習(xí)。獨(dú)立完成5~7題。展示交流。集體評(píng)講。你是根據(jù)什么等量關(guān)系列出方程的?在解方程時(shí)要注意什么?(步驟、格式、檢驗(yàn))
二、探索與實(shí)踐
1、完成第8題。理解題意,完成填寫。小組中交流第一個(gè)問題。匯報(bào)自己發(fā)現(xiàn)。把得到的和分別除以3,看看可以發(fā)現(xiàn)什么?可以得出什么結(jié)論?獨(dú)立解答第二個(gè)問題。你是怎么解答第二個(gè)問題的?指導(dǎo)解答第三個(gè)問題。試著連續(xù)寫出5個(gè)奇數(shù),看看有什么發(fā)現(xiàn)?怎樣求n的值呢?5個(gè)連續(xù)偶數(shù)的和有這樣的規(guī)律嗎?試試看。
2、完成第9題。小組中討論方法,巡視指導(dǎo)。可以先把左邊的兩邊都去掉兩個(gè)蘋果。1個(gè)梨=3個(gè)蘋果再根據(jù)右邊圖:3個(gè)蘋果=6個(gè)獼猴桃=1個(gè)梨
三、與反思
在小組中說說自己對(duì)每次指標(biāo)的理解。自我反思與。說說自己的優(yōu)點(diǎn)與不足。
四、閱讀“你知道嗎”可以再查找資料,詳細(xì)了解。
五、課堂這節(jié)課我們復(fù)習(xí)了哪些內(nèi)容?你有了哪些收獲?
解方程例4教案篇5
?教學(xué)目的】? 精選學(xué)生在解一元二次方程有關(guān)問題時(shí)出現(xiàn)的典型錯(cuò)例加以剖析,幫助學(xué)生找出產(chǎn)生錯(cuò)誤的'原因和糾正錯(cuò)誤的方法,使學(xué)生在解題時(shí)少犯錯(cuò)誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。
?課前練習(xí)】
1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時(shí),方程為一元一次方程;當(dāng) a_____時(shí),方程為一元二次方程。
2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時(shí),方程有兩個(gè)相等的實(shí)數(shù)根,當(dāng)△_______時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根,當(dāng)△________時(shí),方程沒有實(shí)數(shù)根。
?典型例題】
例1?? 下列方程中兩實(shí)數(shù)根之和為2的方程是
(a)?? x2+2x+3=0???? (b) x2-2x+3=0??? (c)? x2-2x-3=0????? (d)? x2+2x+3=0
錯(cuò)答: b
正解: c
錯(cuò)因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選b,又考慮到方程有實(shí)數(shù)根,故由△可知,方程b無實(shí)數(shù)根,方程c合適。
例2 ??若關(guān)于x的方程x2+2(k+2)x+k2=0? 兩個(gè)實(shí)數(shù)根之和大于-4,則k的取值范圍是(???? )
(a)?? k>-1??? ?(b)? k<0?? ?(c) -1< k<0??? (d) -1≤k<0
錯(cuò)解 :b
正解:d
錯(cuò)因剖析:漏掉了方程有實(shí)數(shù)根的前提是△≥0
例3(2000廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2