解方程例3教學反思5篇

時間:2022-11-29 作者:Fallinlove 教學計劃

教育工作中,教學反思是不可忽略的重要部分,在教學結束之后,我們一定要養(yǎng)成寫教學反思的習慣,以下是范文社小編精心為您推薦的解方程例3教學反思5篇,供大家參考。

解方程例3教學反思5篇

解方程例3教學反思篇1

?解簡易方程》教學反思數(shù)學課程標準(實驗稿)》改變了小學階段解方程方法的教學要求,采用了等式的性質來教學解方程?,F(xiàn)將解方程的新舊方法舉例如下:

老方法:

x + 4 = 20

x = 20-4

依據運算之間的關系:一個加數(shù)等于和減另一個加數(shù)。

新方法:

x + 4 = 20

x + 4-4=20-4

依據等式的基本性質1:等式兩邊加上或減去相等的數(shù),等式不變。

改革的原因(摘自教學參考書):

新教材編寫者如此說明:長期以來,小學教學簡易方程時,方程變形的依據總是加減運算的關系或乘除運算之間的關系,這實際上是用算術的思路求未知數(shù)。到了中學又要另起爐灶,引入等式的基本性質或方程的同解原理來教學解方程。小學的思路及其算法掌握得越牢固,對中學代數(shù)起步教學的負遷移就越明顯。因此,現(xiàn)在根據《標準》的要求,從小學起就引入等式的基本性質,并以此為基礎導出解方程的方法。這就較為徹底地避免了同一內容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強中小學數(shù)學教學的銜接。

從這我們不難看出,為了和中學教學解方程的方法保持一致,是此次改革的主要原因。

那么,小學生學這樣的方法,實際操作中會出現(xiàn)什么樣的情況?這樣的改革有沒有什么問題? 在我的教學過程中真的出現(xiàn)了問題 。

1.無法解如a-x=b和ax=b此類的方程

新教材認為,利用等式基本性質解方程后,解象x+a=b與x-a=b一類的方程,都可以歸結為等式兩邊同時減去(加上)a;解如ax=b與xa=b一類的方程,都可以歸結為等式兩邊同時除以(乘上)a。這就是所謂相比原來方法,思路更為統(tǒng)一的優(yōu)越性。然而,它有一個相應的調整措施值得我們注意,那就是它把形如a-x=b和ax=b的方程回避掉了。原因是小學生還沒有學習正負數(shù)的四則運算,利用等式的基本性質解a-x=b,方程變形的過程及算理解釋比較麻煩;而ax=b的方程,因為其本質是分式方程,依據等式的基本性質解需要先去分母,也不適合在小學階段學習。

我認為為了要運用等式基本性質,卻回避掉了兩類方程,這似乎不妥。更重要的是,回避這兩類方程,新教材認為并不影響學生列方程解決實際問題。因為當需要列出形如a-x=b或ax=b的方程時,總是要求學生根據實際問題的數(shù)量關系,列成形如x+b=a或bx=a的方程。但我認為,這樣的處理方法,有時更會無法避免地直接和方程思想發(fā)生矛盾。

如3千克梨比5千克桃子貴0.5元。梨每千克2.5元,桃子每千克多少元?

合理的做法應是設桃子每千克x元,從順向思考,列出方程為2.53-5x=0.5。然而,按新教材的編排,因為學生現(xiàn)在不會解這樣的方程,所以要根據數(shù)量關系,轉列成5x+0.5=2.53之類的方程。又如:課本第62頁中的爸爸比小明大28歲,小明Х歲,爸爸40歲。很多學生根據爸爸比小明大28歲列出40-Х=28,可是無法求解,所以又轉成Х+28=40。

很明顯,第二個方程是和方程思想的基本理念相違背的。我們知道,方程最大的意義,就是讓未知數(shù)參與進式子,使考慮問題更加直接自然。為實現(xiàn)這個目標,很重要的一點,就是列式時應盡量順向思考,以降低思考的難度。這是體現(xiàn)方程方法的優(yōu)越性必然要求。事實上,如果學生能夠列成5x+0.5=2.53 Х+28=40那就說明他已經非常熟悉其中的數(shù)量關系了,此時,用算術方法即可,哪還有列方程來解的必要呢?我們又怎談引導學生認識方程的優(yōu)越性呢?

我們不難看出,根據現(xiàn)實情境列方程解決問題,x當作減數(shù)、當作除數(shù),應當是很常見、很必要的現(xiàn)象。要學生學會解這些方程,是正常的教學要求,這是不應該回避的,否則,我們的教學就會顯得片面和狹隘。

2.解方程的書寫過程太繁瑣

教材要求,在學生用等式基本性質解方程時,方程的變形過程應該要寫出來,等到熟練以后,再逐步省略。這樣的要求,在實際操作中,帶來了書寫上的繁瑣。

因為用等式基本性質解方程,每兩步才能完成一次方程的變形。這相對于簡單的方程,尚沒什么,但對一些稍復雜的方程,其解的過程就顯得太繁瑣了

從這兩個方面來看,小學里學習等式的基本性質,并運用它來解方程,在實際操作中,也存在許多的現(xiàn)實問題。那么,如果說用算術思路解方程對初中學習有負遷移,需要改革,現(xiàn)在改成用等式基本性質解方程,同樣出現(xiàn)問題,那我們又如何是好呢?

解方程例3教學反思篇2

這節(jié)課學習的是列方程解決行程問題中的相遇問題,學生基本對列方程解答實際問題的思路、方法步驟已經熟悉,解各種方程也熟練,現(xiàn)在我們主要解決的是如何分析相遇問題的數(shù)量關系,這是本節(jié)課的關鍵。但關于行程問題,學生學習過一步解法,知道速度×時間=路程,但兩人有關的行程問題較難,比較抽象,學生不易理解,這節(jié)課是相遇問題的基礎,其拓展的問題會比較多,且更難。我從學生實際出發(fā),并利用實際行動展現(xiàn),逐步引導學生探究。

一、復習等量關系,做好鋪墊。

學生已學習了一人行走的行程問題解答方法,我上課開始,舉例一步問題,讓學生解答,并說出等量關系。同時改變問題,問等量關系。使學生進一步熟悉行程問題的解答依據。

二、學生上臺展示,變抽象為直觀。

相遇問題比較抽象,我讓兩名學生上臺走路,現(xiàn)場照題目要求直觀演示。為了讓學生觀察清楚,也為了更好地貼合問題,直觀展示,我特地喊口令,讓兩學生依口令一秒一秒走,并掌握步幅大小,保證三秒相遇:第一秒,你兩步,我三步;第二秒,第三秒相遇。

理解了題意,問題來了,兩學生同時走,到相遇,時間有什么關系?(相等),這段路程幾人走完的?總路程怎么計算?通過提問,發(fā)現(xiàn)有學生模糊,剛才關注點和問題脫鉤,于是剛才演示的兩名同學再次演示,這次學生帶著問題觀察,問題逐一解答。

三、畫線段圖,幫助學生建構模型思想對走路演示,學生銘刻在心,腦中有相遇問題的全過程和細節(jié),如兩人的時間啦,哪一段路程誰走的?相遇點會靠近誰?等等。首先要求:已知條件要全部表明,連同單位,問題也要標注。師生一步一步,共同完成線段圖畫法,把心中的理解都畫出來。再次直觀展示,使學生對相遇問題有了更清楚的認識,幫助學生建構相遇問題的模型思想,兩人共同走完,即甲的路程+乙的路程=總路程。同時兩人時間相等,即:速度和×相遇時間=總路程。學生很快列出方程解答。

數(shù)學實際問題往往比較抽象,老師需借助各種手段,想方設法變抽象為直觀,幫助學生更好理解實際問題。

解方程例3教學反思篇3

義務教育小學階段五年級數(shù)學上冊第五單元《簡易方程》在解簡易方程呈現(xiàn)五個例題。

其中例1以x+3=9為例,討論了x加減某一數(shù)的方程解法。教學重點是運用等式的性質1解方程,并引入方程的解與解方程兩個概念。如圖所示:

為了便于給出解方程全過程的直觀展示,例題中借助三幅天平演示圖,展現(xiàn)了解方程的完整思考過程,這一點值得稱道,對于學生來說,這樣的圖示剖析,有助于學生自我探究理解,學習解簡易方程,從而學會解簡易方程的方法。

但問題來了。在例1當中沒有完整的解題過程示范,只有檢驗過程的示范。如上圖所示。而完整的示范出現(xiàn)在例3,經歷了例1運用等式性質1解方程,例2利用等式性質2解方程,遞進至例3完成方程轉化解方法(未知數(shù)位于減數(shù)、除數(shù)位置,屬逆向解方程)才有一個完整的解方程的示范。如下圖所示:

從學習心理學來講,學生在接觸新知識點的第一印象極為重要,第一次學習新知,是由不知到知,由不懂到懂而邁出的重要第一步。這一步的踏出對學生而言異常重要。第一次是新的,大腦對新知的接受是處于興奮狀態(tài),此時的理解記憶刻痕是最深的,無論到的是直,是斜,一旦留下,再想更改那就難上加難。作為老師一定要重視學生的第一次接觸新知,“課上損失課外補”更是事倍功半。

學材的編排著實讓我有點撓頭,明明能夠一目了解,通過閱讀自學就能搞定的解方程規(guī)范,這樣一個基礎性的知識點,非要放在例3才有完整呈現(xiàn),在實際的課堂教學中有點不得勁兒,也有些不符合學生學習的認知規(guī)律。

解方程例3教學反思篇4

?解方程》是學生接觸方程以來的第一堂計算課,理解“方程的解”、“解方程”兩個概念;會運用天平平衡的道理解簡單的方程。本著孩子比較感興趣的基礎上,本節(jié)課我采用的是課前預習,課上交流的形式進行,整節(jié)課大多數(shù)孩子在預習的基礎上能夠掌握方程的解法,但是個別孩子沒有掌握。現(xiàn)反思如下:

1、出示預習提綱,讓孩子預習有根據。

為讓孩子形成自覺的學習習慣,師指導孩子進行預習,出示了以下三個問題:

一是什么是方程的解?舉例說明。

二是什么是解方程?你是根據什么來解方程?

三是如何進行方程的檢驗?

好多孩子能夠對這幾個問題進行探究,并對意義理解比較深刻。

2、課上交流。

交流是學生思維火花的碰撞。對于什么是方程的解,孩子們舉例子,根據例題來詮釋方程的解的意義。在進行交流根據什么來解方程的環(huán)節(jié)中,孩子們各抒已見,有的是用加法中各部分間的關系,有的是用等式的性質,還有的還接口答。依次把方法展示給大家,讓孩子明白方程的解的意義和解方程的過程。再確定統(tǒng)一的解答方法,這個環(huán)節(jié)孩子興趣很高,大部分孩子能夠學會利用等式的性質進行解方程。整個的環(huán)節(jié)讓孩子在探究中發(fā)現(xiàn)規(guī)律,找到方法,學生學的開心,對于概念的理解也很扎實。

解方程例3教學反思篇5

在這節(jié)課的教學中,我從以下幾個方面入手:

一、感受天平的平衡現(xiàn)象,悟出等式的性質變化。

在學習中,我以多媒體中天平的平衡來呈現(xiàn)等式的性質,學生能直觀形象的理解性質,平衡的條件是兩邊同時加上、或減少相同的重量,才能保持平衡。但具體到方程中應用起來學生感覺活動是獲取真知的有效途徑,通過以上的活動,學生可以很順利地得出結果:天平的兩側都加上相同的質量,天平仍平衡。

二、等式性質解方程——初步感悟它的妙用

在課堂上學生對用等式的性質來解方程感到很陌生,在他們原有的經驗中更喜歡用加減法各部分的關系來解,所以我們要特別注意引導學生認識到用等式的性質來解方程的優(yōu)越性,從而養(yǎng)成用等式的性質來解方程的習慣。

在整節(jié)課的教學中,其實學生是非常主動的,他們總覺得天平能啟發(fā)著他們去解決這么神奇的方程,孩子們對方程都有一種難以割舍的好奇心。

新課程的改革,使得小學的知識要體現(xiàn)與初中更加的接軌,五年級上冊第四單元“解簡易方程”中進行了一次新的改革。要求方程的解法要根據天平的原理來進行解答,也就是說要通過等式的性質來解方程,這一方法雖然說讓方程的解法找到了本質的東西,但是也讓我感到了許多困惑

1、從教材的編排上,整體難度下降,有意避開了,形如:45—x=23 24÷x =6等類型的題目。把用等式解決的方法單一化了。在實際教學中我們要求學生較熟練地利用等式的方法來解方程,但用這樣的方法來解方程之后,書本不再出現(xiàn)x前面是減號或除號的方程題了,學生在列方程解實際應用時,我們并不能刻意地強調學生不會列出x在后面的方程,我們更頭痛于學生的實際解答能力。在實際的方程應用中,這種情況是不可避免的。很顯然這存在著目前的局限性了。對于好的學生來說,我們會讓他們嘗試接受——解答x在后面這類方程的解答方法,就是等號二邊同時加上x,再左右換位置,再二邊減一個數(shù),真有點麻煩了。而且有的學生還很難掌握這樣方法。

2、內容看似少實際教得多。難度下降后,看起來教師要教的內容變得少了,可以實際上反而是多了。教師要給他們補充x前面是除號或減號的方程的解法。要教他們列方程時怎么避免x前面是除號或減號的方程的出現(xiàn)等等。