勾股定理教案5篇

時間:2022-10-20 作者:Iraqis 備課教案

制定教案需要我們認真分析自己在教學中的不足,想要從根本上提高自己的教學質(zhì)量,就必須認真對待制定教案這件事,下面是范文社小編為您分享的勾股定理教案5篇,感謝您的參閱。

勾股定理教案5篇

勾股定理教案篇1

[教學分析]

勾股定理是揭示三角形三條邊數(shù)量關系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時在實際生活中具有廣泛的用途,“數(shù)學源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際操作,使學生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學生理解勾股定理,以利于進行正確的應用。

本節(jié)教科書從畢達哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時教科書以命題的形式呈現(xiàn)了勾股定理。關于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數(shù)學問題中的應用,使學生對勾股定理的作用有一定的認識。

[教學目標]

一、 知識與技能

1、探索直角三角形三邊關系,掌握勾股定理,發(fā)展幾何思維。

2、應用勾股定理解決簡單的實際問題

3學會簡單的合情推理與數(shù)學說理

二、 過程與方法

引入兩段中西關于勾股定理的史料,激發(fā)同學們的興趣,引發(fā)同學們的思考。通過動手操作探索與發(fā)現(xiàn)直角三角形三邊關系,經(jīng)歷小組協(xié)作與討論,進一步發(fā)展合作交流能力和數(shù)學表達能力,并感受勾股定理的應用知識。

三、 情感與態(tài)度目標

通過對勾股定理歷史的了解,感受數(shù)學文化,激發(fā)學習興趣;在探究活動中,學生親自動手對勾股定理進行探索與驗證,培養(yǎng)學生的合作交流意識和探索精神,以及自主學習的能力。

四、 重點與難點

1、探索和證明勾股定理

2熟練運用勾股定理

[教學過程]

一、創(chuàng)設情景,揭示課題

1、教師展示圖片并介紹第一情景

以中國最早的一部數(shù)學著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請教數(shù)學知識時的對話,為勾股定理的出現(xiàn)埋下伏筆。

周公問:“竊聞乎大夫善數(shù)也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也。”

2、教師展示圖片并介紹第二情景

畢達哥拉斯是古希臘著名的數(shù)學家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。

二、師生協(xié)作,探究問題

1、現(xiàn)在請你也動手數(shù)一下格子,你能有什么發(fā)現(xiàn)嗎?

2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點呢?

3、你能得到什么結(jié)論嗎?

三、得出命題

勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋: 由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。

四、勾股定理的證明

趙爽弦圖的證法(圖2)

第一種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的直角三角形圍在外面形成的。因為邊長為 的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡得 。

第二種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的

角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為 的正方形“小洞”。

因為邊長為 的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡得 。

這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學家趙爽高超的證題思想和對數(shù)學的鉆研精神,是我們中華民族的驕傲。

五、應用舉例,拓展訓練,鞏固反饋。

勾股定理的靈活運用勾股定理在實際的生產(chǎn)生活當中有著廣泛的應用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運用勾股定理解決一些問題,你可以嗎?試一試。

例題:小明媽媽買了一部29英寸(74厘米)的電視機,小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘長和46厘米寬,他覺得一定是售貨員搞錯了,你同意他的想法嗎?你能解釋這是為什么嗎?

六、歸納總結(jié)1、內(nèi)容總結(jié):探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實際問題

2、方法歸納:數(shù)方格看圖找關系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發(fā)現(xiàn)。

七、討論交流

讓學生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機會,通過提示性的引導,讓學生對勾股定理的概念豁然開朗,為后面勾股定理的應用打下基礎。

我們班的同學很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學們課后在反思天地中都發(fā)表一下自己的學習心得。

勾股定理教案篇2

【學習目標】

能運用勾股定理及直角三角形的判別條件解決簡單的實際問題.

【學習重點】

勾股定理及直角三角形的判別條件的運用.

【學習重點】

直角三角形模型的建立.

【學習過程】

一.課前復習

勾股定理及勾股定理逆定理的區(qū)別

二.新課學習

探究點一:螞蟻沿圓柱側(cè)面爬行的最短路徑問題

1.3如圖,有一個圓柱,它的高等于12cm,底面圓的周長是18cm.在圓柱下底面的a點有一只螞蟻,它想吃到上底面上與a點相對的b點處的食物,沿圓柱側(cè)面爬行的最短路程是多少?

思考:

1.利用學具,嘗試從a點到b點沿圓柱側(cè)面畫出幾條線路,你認為

這樣的線路有幾條?可分為幾類?

2.將右圖的圓柱側(cè)面剪開展開成一個長方形,b點在什么位置?從

a點到b點的最短路線是什么?你是如何畫的?

1.33.螞蟻從a點出發(fā),想吃到b點上的食物,它沿圓柱側(cè)面爬行的最短路程是多少?你是如何解答這個問題的?畫出圖形,寫出解答過程。

4.你是如何將這個實際問題轉(zhuǎn)化為數(shù)學問題的?

小結(jié):

你是如何解決圓柱體側(cè)面上兩點之間的.最短距離問題的?

探究點二:利用勾股定理逆定理如何判斷兩線垂直?

1.31.31.3李叔叔想要檢測雕塑底座正面的ad邊和bc邊是否分別垂直底邊ab,

但他隨身只帶了卷尺。(參看p13頁雕塑圖1-13)

(1)你能替他想辦法完成任務嗎?

1.31.3(2)李叔叔量得ad的長是30cm,ab的長是40cm,

bd長是50cm.ad邊垂直于ab邊嗎?你是如何解決這個問題的?

(3)小明隨身只有一個長度為20cm的刻度尺,他能有辦法檢驗ad邊是否垂直于ab邊嗎?bc邊與ab邊呢?

小結(jié):通過本道例題的探索,判斷兩線垂直,你學會了什么方法?

探究點三:利用勾股定理的方程思想在實際問題中的應用

例圖1-14是一個滑梯示意圖,若將滑道ac水平放置,則剛好與ab一樣長.已知滑梯的高度ce=3m,cd=1m,試求滑道ac的長.

1.3

思考:

1.求滑道ac的長的問題可以轉(zhuǎn)化為什么數(shù)學問題?

2.你是如何解決這個問題的?寫出解答過程。

小結(jié):

方程思想是勾股定理中的重要思想,勾股定理反應的直角三角形三邊的關系正是構(gòu)建方程的基礎.

四.課堂小結(jié):本節(jié)課你學到了什么?

三.新知應用

1.如圖,臺階a處的螞蟻要爬到b處搬運食物,它怎么走最近?并求出最近距離.

1.3

2.如圖,在水池的正中央有一根蘆葦,池底長10尺,它高出水而1尺,如果把這根蘆葦拉向水池一邊,它的頂端恰好到達池邊的水面則這根蘆葦?shù)拈L度是()

1.3

五.作業(yè)布置:習題1.41,3,4題

【反思】

一、教師我的體會:

①、我根據(jù)學生實際情況認真?zhèn)湔n這節(jié)課,書本總共兩個例題,且兩個例題都很難,如果一節(jié)課就講這兩題難題,那一方面學生的學習效率會比較低,另一方面會使學生畏難情緒增加。所以,我簡化教材,使教材易于操作,讓學生易于學習,有利于學生學習新知識、接受新知識,降低學習難度。

把教材讀薄,

②、除了備教材外,還備學生。從教案及授課過程也可以看出,充分考慮到了學生的年齡特點:對新事物有好奇心,但對新知識的鉆研熱情又不夠高,這樣,造成教學難度較大,為了改變這一狀況,在處理教材時,把某些數(shù)學語言轉(zhuǎn)換成通俗文字來表達,把難度大的運用能力降低為難度稍細的理解能力,讓學生樂于面對奧妙而又有一定深度的數(shù)學,樂于學習數(shù)學。

③、新課選用的例子、練習,都是經(jīng)過精心挑選的,運用性強,貼近生活,與生活實際緊密聯(lián)系,既達到學習、鞏固新知識的目的,同時,又充分展現(xiàn)出數(shù)學教學的重大特征:數(shù)學源于生活實際,又服務于生活實際。勾股定理源于生活,但同時它又能極大的為生活服務。

④、使用多媒體進行教學,使知識顯得形象直觀,充分發(fā)揮現(xiàn)代技術作用。

二、學生體會:

課前,我們也去查閱了一些資料,關于勾股定理的證明以及有關的一些應用,通過這節(jié)課,真真發(fā)現(xiàn)勾股定理真真來源于生活,我們的幾何圖形和幾何計算對于勾股定理來說非常廣泛,而且以后更要用好它。對于勾股定理都應用時,我覺得關鍵是找到相關的三角形,并且分清直角邊或斜邊,靈活機智地進行計算和一些推理。另外與同學間在數(shù)學課上有自主學習的機會,有相互之間的討論、爭辯等協(xié)作的機會,在合作學習的過程中共同提高我覺得都是難得的機會。鍛煉了能力,提高了思維品質(zhì),并且勾股定理的應用中我覺得圖形很美,古代的數(shù)學家已經(jīng)有了很好的研究并作出了很大的貢獻,現(xiàn)代的藝術家們也在各方面用到很多,同時在課堂中漸漸地培養(yǎng)了我們的數(shù)學興趣和一定的思維能力。

不過課堂上老師在最后一題的畫圖中能放一放,讓我們有時間去思考怎么畫,那會更好些,自然思維也得到了發(fā)展。課上老師鼓勵我們嘗試不完善的甚至錯誤的意見,大膽發(fā)表自己的見解,體現(xiàn)了我們是學習的主人。數(shù)學課堂里充滿了智慧。

勾股定理教案篇3

課題:

勾股定理

課型:

新授課

課時安排:

1課時

教學目的:

一、知識與技能目標理解和掌握勾股定理的內(nèi)容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。

二、過程與方法目標通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。

三、情感、態(tài)度與價值觀目標了解中國古代的數(shù)學成就,激發(fā)學生愛國熱情;學生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時體驗數(shù)學的美感,從而了解數(shù)學,喜歡幾何。

教學重點:

引導學生經(jīng)歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題

教學難點:

用面積法方法證明勾股定理

課前準備:

多媒體ppt,相關圖片

教學過程:

(一)情境導入

1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀念郵票,美麗的勾股樹,20xx年國際數(shù)學大會會標等。通過圖形欣賞,感受數(shù)學之美,感受勾股定理的文化價值。

2、多媒體課件演示flash小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?已知一直角三角形的兩邊,如何求第三邊?學習了今天的這節(jié)課后,同學們就會有辦法解決了。

(二)學習新課問題一是等腰直角三角形的情形(通過多媒體給出圖形),判斷外圍三個正方形面積有何關系?相傳2500年前,畢達哥拉斯(古希臘著名的哲學家、數(shù)學家、天文學家)有一次在朋友家做客時,發(fā)現(xiàn)朋友家里用磚鋪成的地面中反映了直角三角形三邊的某種數(shù)量關系。你能觀察圖中的地面,看看能發(fā)現(xiàn)什么?對于等腰直角三角形有這樣的性質(zhì):兩直邊的平方和等于斜邊的平方那么對于一般的直角三角形是否也有這樣的性質(zhì)呢?請大家畫一個任意的直角三角形,量一量,算一算。問題二是一般直角三角形的情形,判斷這時外圍三個正方形的面積是否也存在這種關系?通過這個觀察和驗算這個直角三角形外圍的三個正方形面積之間的關系,同學們發(fā)現(xiàn)了什么規(guī)律嗎?通過前面對兩個問題的驗證,可以得到勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊為c,那么a2+b2=c2。

(三)鞏固練習1、如果一個直角三角形的兩條邊長分別是6厘米和8厘米,那么這個三角形的周長是多少厘米?2、解決課程開始時提出的情境問題。

(四)小結(jié)

1、背景知識介紹①《周髀算徑》中,西周的商高在公元一千多年前發(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律;②康熙數(shù)學專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是他的獨創(chuàng)。

2、通過這節(jié)課的學習,你會寫方程了嗎?你有什么收獲和體會?

(五)作業(yè)練習18.1中的1、2、3題。板書設計:勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊為c,那么a2+b2=c2。

勾股定理教案篇4

一、回顧交流,合作學習

【活動方略】

活動設計:教師先將學生分成四人小組,交流各自的小結(jié),并結(jié)合課本p87的小結(jié)進行反思,教師巡視,并且不斷引導學生進入復習軌道.然后進行小組匯報,匯報時可借助投影儀,要求學生上臺匯報,最后教師歸納.

【問題探究1】(投影顯示)

飛機在空中水平飛行,某一時刻剛好飛到小明頭頂正上方4000米處,過了20秒,飛機距離小明頭頂5000米,問:飛機飛行了多少千米?

思路點撥:根據(jù)題意,可以先畫出符合題意的圖形,如右圖,圖中△abc中的∠c=90°,ac=4000米,ab=5000米,要求出飛機這時飛行多少千米,就要知道飛機在20秒時間里飛行的路程,也就是圖中的bc長,在這個問題中,斜邊和一直角邊是已知的,這樣,我們可以根據(jù)勾股定理來計算出bc的長.(3000千米)

【活動方略】

教師活動:操作投影儀,引導學生解決問題,請兩位學生上臺演示,然后講評.

學生活動:獨立完成“問題探究1”,然后踴躍舉手,上臺演示或與同伴交流.

【問題探究2】(投影顯示)

一個零件的形狀如右圖,按規(guī)定這個零件中∠a與∠bdc都應為直角,工人師傅量得零件各邊尺寸:ad=4,ab=3,db=5,dc=12,bc=13,請你判斷這個零件符合要求嗎?為什么?

思路點撥:要檢驗這個零件是否符合要求,只要判斷△adb和△dba是否為直角三角形,這樣可以通過勾股定理的逆定理予以解決:

ab2+ad2=32+42=9+16=25=bd2,得∠a=90°,同理可得∠cdb=90°,因此,這個零件符合要求.

【活動方略】

教師活動:操作投影儀,關注學生的思維,請兩位學生上講臺演示之后再評講.

學生活動:思考后,完成“問題探究2”,小結(jié)方法.

解:在△abc中,ab2+ad2=32+42=9+16=25=bd2,

∴△abd為直角三角形,∠a=90°.

在△bdc中,bd2+dc2=52+122=25+144=169=132=bc2.

∴△bdc是直角三角形,∠cdb=90°

因此這個零件符合要求.

【問題探究3】

甲、乙兩位探險者在沙漠進行探險,某日早晨8:00甲先出發(fā),他以6千米/時的速度向東行走,1小時后乙出發(fā),他以5千米/時的速度向北行進,上午10:00,甲、乙兩人相距多遠?

思路點撥:要求甲、乙兩人的距離,就要確定甲、乙兩人在平面的位置關系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)

【活動方略】

教師活動:操作投影儀,巡視、關注學生訓練,并請兩位學生上講臺“板演”.

學生活動:課堂練習,與同伴交流或舉手爭取上臺演示

勾股定理教案篇5

教學目標:

一知識技能

1.理解勾股定理的逆定理的證明方法和證明過程;

2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是直角三角形;

二數(shù)學思考

1.通過勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生發(fā)展與形成的過程;

2.通過三角形三邊的數(shù)量關系來判斷三角形的形狀,體驗數(shù)形結(jié)合法的應用.

三解決問題

通過勾股定理的逆定理的證明及其應用,體會數(shù)形結(jié)合法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題.

四情感態(tài)度

1.通過三角形三邊的數(shù)量關系來判斷三角形的形狀,體驗數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一關系;

2.在探究勾股定理的逆定理的證明及應用的活動中,通過一系列富有探究性的問題,滲透與他人交流合作的意識和探究精神.

教學重難點:

一重點:勾股定理的逆定理及其應用.

二難點:勾股定理的逆定理的證明.

教學方法

啟發(fā)引導分組討論合作交流等。

教學媒體

多媒體課件演示。

教學過程:

一復習孕新,引入課題

問題:

(1) 勾股定理的內(nèi)容是什么?

(2) 求以線段ab為直角邊的直角三角形的斜邊c的長:

① a=3,b=4

② a=2.5,b=6

③ a=4,b=7.5

(3) 分別以上述abc為邊的三角形的形狀會是什么樣的呢?

二動手實踐,檢驗推測

1.把準備好的一根打了13個等距離結(jié)的繩子,按3個結(jié)4個結(jié)5個結(jié)的長度為邊擺放成一個三角形,請觀察并說出此三角形的形狀?

學生分組活動,動手操作,并在組內(nèi)進行交流討論的基礎上,作出實踐性預測.

教師深入小組參與活動,并幫助指導部分學生完成任務,得出勾股定理的逆命題.在此基礎上,介紹:古埃及和我國古代大禹治水都是用這種方法來確定直角的.

2.分別以2.5cm6cm6.5cm和4cm7.5cm8.5cm為三邊畫出兩個三角形,請觀察并說出此三角形的形狀?

3.結(jié)合三角形三邊長度的平方關系,你能猜一猜三角形的三邊長度與三角形的形狀之間有怎樣的關系嗎?

三探索歸納,證明猜想

問題

1.三邊長度分別為3 cm4 cm5 cm的三角形與以3 cm4 cm為直角邊的直角三角形之間有什么關系?你是怎樣得到的?

2.你能證明以2.5cm6cm6.5cm和4cm7.5cm8.5cm為三邊長的三角形是直角三角形嗎?

3.如圖18.2-2,若△abc的三邊長

滿足

,試證明△abc是直角三角形,請簡要地寫出證明過程.

教師提出問題,并適時誘導,指導學生完成問題3的證明.之后,歸納得出勾股定理的逆定理.

四嘗試運用,熟悉定理

問題

1例1:判斷由線段

組成的三角形是不是直角三角形:

(1)

(2)

2三角形的兩邊長分別為3和4,要使這個三角形是直角三角形,則第三條邊長是多少?

教師巡視,了解學生對知識的掌握情況.

特別關注學生在練習中反映出的問題,有針對性地講解,學生能否熟練地應用勾股定理的逆定理去分析和解決問題

五類比模仿,鞏固新知

1.練習:練習題13.

2.思考:習題18.2第5題.

部分學生演板,剩余學生在課堂練習本上獨立完成.

小結(jié)梳理,內(nèi)化新知

六1.小結(jié):教師引導學生回憶本節(jié)課所學的知識.

2.作業(yè):

(1)必做題:習題18.2第1題(2)(4)和第3題;

(2)選做題:習題18.2第46題.