八年級數(shù)學上冊教案人教版6篇

時間:2022-12-01 作者:pUssy 備課教案

教案是我們課堂流程的重要依據(jù),所以邏輯清晰是很重要的,作為一名教師必須了解教案的組成,以下是范文社小編精心為您推薦的八年級數(shù)學上冊教案人教版6篇,供大家參考。

八年級數(shù)學上冊教案人教版6篇

八年級數(shù)學上冊教案人教版篇1

一、內容和內容解析

1.內容

三角形高線、中線及角平分線的概念、幾何語言表達及它們的畫法.

2.內容解析

本節(jié)內容概念較多,有三角形的高、中線、角平分線和重心等有關概念;需要學生動手的頻率也較高,要掌握任意三角形的高、中線、角平分線的畫法,培養(yǎng)學生動手操作及解決問題的能力;鼓勵學生主動參與,體驗幾何知識在現(xiàn)實生活中的真實性,激發(fā)學生熱愛生活、勇于探索的思想感情。

理解三角形高、角平分線及中線概念到用幾何語言精確表述,這是學生在幾何學習上的一個深入.學習了這一課,對于學生增長幾何知識,運用幾何知識解決生活中的有關問題,起著十分重要的作用.它也是學習三角形的角、邊的延續(xù)以及三角形全等、相似等后繼知識一個準備.

本節(jié)的重點是了解三角形的高、中線及角平分線概念的同時還要掌握它們的畫法,難點是鈍角三角形的高的畫法及不同類型的三角形高線的位置關系.

二、目標和目標解析

1.教學目標

(1)理解三角形的高、中線與角平分線等概念;

(2)會用工具畫三角形的高、中線與角平分線;

2.教學目標解析

(1)經(jīng)歷畫圖實踐過程,理解三角形的高、中線與角平分線等概念.

(2)能夠熟練用幾何語言表達三角形的高、中線與角平分線的性質.

(3)掌握三角形的高、中線與角平分線的畫法.

(4)了解三角形的三條高、三條中線與三條角平分線分別相交于一點.

三、教學問題診斷分析

三角形的高線的理解:三角形的高是線段,不是直線,它的一個端點是三角形的頂點,另一個端點在這個頂點的對邊或對邊所在的直線上.

三角形的中線的理解:三角形的中線也是線段,它是一個頂點和對邊中點的連線,它的一個端點是三角形的頂點,另一個端點是這個頂點的對邊中點.

三角形的角平分線的理解:三角形的角平分線也是一條線段,角的頂點是一個端點,另一個端點在對邊上.而角的平分線是一條射線,即就是說三角形的角平分線與通常的角平線有一定的聯(lián)系又有本質的區(qū)別.

八年級數(shù)學上冊教案人教版篇2

教學目標

1.知識與技能

領會運用完全平方公式進行因式分解的方法,發(fā)展推理能力.

2.過程與方法

經(jīng)歷探索利用完全平方公式進行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.

3.情感、態(tài)度與價值觀

培養(yǎng)良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應用能力.

重、難點與關鍵

1.重點:理解完全平方公式因式分解,并學會應用.

2.難點:靈活地應用公式法進行因式分解.

3.關鍵:應用“化歸”、“換元”的思想方法,把問題進行形式上的轉化,達到能應用公式法分解因式的目的

教學方法

采用“自主探究”教學方法,在教師適當指導下完成本節(jié)課內容.

教學過程

一、回顧交流,導入新知

?問題牽引】

1.分解因式:

(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;

(3)x2-0.01y2.

?知識遷移】

2.計算下列各式:

(1)(m-4n)2;(2)(m+4n)2;

(3)(a+b)2;(4)(a-b)2.

?教師活動】引導學生完成下面兩道題,并運用數(shù)學“互逆”的思想,尋找因式分解的規(guī)律.

3.分解因式:

(1)m2-8mn+16n2(2)m2+8mn+16n2;

(3)a2+2ab+b2;(4)a2-2ab+b2.

?學生活動】從逆向思維的角度入手,很快得到下面答案:

解:

(1)m2-8mn+16n2=(m-4n)2;

(2)m2+8mn+16n2=(m+4n)2;

(3)a2+2ab+b2=(a+b)2;

(4)a2-2ab+b2=(a-b)2.

?歸納公式】完全平方公式a2±2ab+b2=(a±b)2.

二、范例學習,應用所學

?例1】把下列各式分解因式:

(1)-4a2b+12ab2-9b3;

(2)8a-4a2-4;

(3)(x+y)2-14(x+y)+49;(4)+n4.

?例2】如果x2+axy+16y2是完全平方,求a的值.

?思路點撥】根據(jù)完全平方式的定義,解此題時應分兩種情況,即兩數(shù)和的平方或者兩數(shù)差的平方,由此相應求出a的值,即可求出a3.

三、隨堂練習,鞏固深化

課本p170練習第1、2題.

?探研時空】

1.已知x+y=7,xy=10,求下列各式的值.

(1)x2+y2;(2)(x-y)2

2.已知x+=-3,求x4+的值.

四、課堂總結,發(fā)展?jié)撃?/p>

由于多項式的因式分解與整式乘法正好相反,因此把整式乘法公式反過來寫,就得到多項式因式分解的公式,主要的有以下三個:

a2-b2=(a+b)(a-b);

a2±ab+b2=(a±b)2.

在運用公式因式分解時,要注意:

(1)每個公式的形式與特點,通過對多項式的項數(shù)、次數(shù)等的總體分析來確定,是否可以用公式分解以及用哪個公式分解,通常是,當多項式是二項式時,考慮用平方差公式分解;當多項式是三項時,應考慮用完全平方公式分解;(2)在有些情況下,多項式不一定能直接用公式,需要進行適當?shù)慕M合、變形、代換后,再使用公式法分解;(3)當多項式各項有公因式時,應該首先考慮提公因式,然后再運用公式分解.

五、布置作業(yè),專題突破

八年級數(shù)學上冊教案人教版篇3

一、教學目標

1.理解分式的基本性質.

2.會用分式的基本性質將分式變形.

二、重點、難點

1.重點:理解分式的基本性質.

2.難點:靈活應用分式的基本性質將分式變形.

3.認知難點與突破方法

教學難點是靈活應用分式的基本性質將分式變形.突破的方法是通過復習分數(shù)的通分、約分總結出分數(shù)的基本性質,再用類比的方法得出分式的基本性質.應用分式的基本性質導出通分、約分的概念,使學生在理解的基礎上靈活地將分式變形.

三、練習題的意圖分析

1.p7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應用分式的基本性質,相應地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。

2.p9的例3、例4地目的是進一步運用分式的基本性質進行約分、通分.值得注意的是:約分是要找準分子和分母的公因式,最后的結果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。

教師要講清方法,還要及時地糾正學生做題時出現(xiàn)的錯誤,使學生在做提示加深對相應概念及方法的理解。

3.p11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號.這一類題教材里沒有例題,但它也是由分式的基本性質得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。

“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質的應用之一,所以補充例5。

四、課堂引入

1.請同學們考慮:與相等嗎?與相等嗎?為什么?

2.說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?

3.提問分數(shù)的基本性質,讓學生類比猜想出分式的基本性質.

五、例題講解

p7例2.填空:

[分析]應用分式的基本性質把已知的分子、分母同乘以或除以同一個整式,使分式的值不變.

p11例3.約分:

[分析]約分是應用分式的基本性質把分式的分子、分母同除以同一個整式,使分式的值不變.所以要找準分子和分母的公因式,約分的結果要是最簡分式.

p11例4.通分:

[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母.

八年級數(shù)學上冊教案人教版篇4

一、教學目標:

1、加深對加權平均數(shù)的理解

2、會根據(jù)頻數(shù)分布表求加權平均數(shù),從而解決一些實際問題

3、會用計算器求加權平均數(shù)的值

二、重點、難點和難點的突破方法:

1、重點:根據(jù)頻數(shù)分布表求加權平均數(shù)

2、難點:根據(jù)頻數(shù)分布表求加權平均數(shù)

3、難點的突破方法:

首先應先復習組中值的定義,在七年級下教材p72中已經(jīng)介紹過組中值定義。因為在根據(jù)頻數(shù)分布表求加權平均數(shù)近似值過程中要用到組中值去代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,所以有必要在這里復習組中值定義。

應給學生介紹為什么可以利用組中值代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,以及這樣代替的好處、不妨舉一個例子,在一組中如果數(shù)據(jù)分布較為均勻時,比如教材p140探究問題的表格中的第三組數(shù)據(jù),它的范圍是41≤x≤61,共有20個數(shù)據(jù),若分布較為平均,41、42、43、44…60個出現(xiàn)1次,那么這組數(shù)據(jù)的和為41+42+…+60=1010。而用組中值51去乘以頻數(shù)20恰好為1020≈1010,即當數(shù)據(jù)分布較為平均時組中值恰好近似等于它的平均數(shù)。所以利用組中值x頻數(shù)去代替這組數(shù)據(jù)的和還是比較合理的,而且這樣做的好處是簡化了計算量。

為了更好的理解這種近似計算的方法和合理性,可以讓學生去讀統(tǒng)計表,體會表格的實際意義。

三、例習題的意圖分析

1、教材p140探究欄目的意圖。

(1)、主要是想引出根據(jù)頻數(shù)分布表求加權平均數(shù)近似值的計算方法。

(2)、加深了對“權”意義的理解:當利用組中值近似取代替一組數(shù)據(jù)中的平均值時,頻數(shù)恰好反映這組數(shù)據(jù)的輕重程度,即權。

這個探究欄目也可以幫助學生去回憶、復習七年級下的關于頻數(shù)分布表的一些內容,比如組、組中值及頻數(shù)在表中的具體意義。

2、教材p140的思考的意圖。

(1)、使學生通過思考這兩個問題過程中體會利用統(tǒng)計知識可以解決生活中的許多實際問題

(2)、幫助學生理解表中所表達出來的信息,培養(yǎng)學生分析數(shù)據(jù)的能力。

3、p141利用計算器計算平均值

這部分篇幅較小,與傳統(tǒng)教材那種詳細介紹計算器使用方法產(chǎn)生明顯對比。一則由于學校中學生使用計算器不同,其操作過程有差別亦不同,再者,各種計算器的使用說明書都有詳盡介紹,同時也說明在今后中考趨勢仍是不允許使用計算器。所以本節(jié)課的重點內容不是利用計算器求加權平均數(shù),但是掌握其使用方法確實可以運算變得簡單。統(tǒng)計中一些數(shù)據(jù)較大、較多的計算也變得容易些了。

四、課堂引入

采用教材原有的引入問題,設計的幾個問題如下:

(1)、請同學讀p140探究問題,依據(jù)統(tǒng)計表可以讀出哪些信息

(2)、這里的組中值指什么,它是怎樣確定的?

(3)、第二組數(shù)據(jù)的頻數(shù)5指什么呢?

(4)、如果每組數(shù)據(jù)在本組中分布較為均勻,比組數(shù)據(jù)的平均值和組中值有什么關系。

五、隨堂練習

1、某校為了了解學生作課外作業(yè)所用時間的情況,對學生作課外作業(yè)所用時間進行調查,下表是該校初二某班50名學生某一天做數(shù)學課外作業(yè)所用時間的情況統(tǒng)計表

所用時間t(分鐘)人數(shù)

0

0

20

30

40

50

(1)、第二組數(shù)據(jù)的組中值是多少?

(2)、求該班學生平均每天做數(shù)學作業(yè)所用時間

2、某班40名學生身高情況如下圖,

請計算該班學生平均身高

答案1.(1).15. (2)28. 2. 165

、課后練習:

1、某公司有15名員工,他們所在的部門及相應每人所創(chuàng)的年利潤如下表

部門a b c d e f g

人數(shù)1 1 2 4 2 2 5

每人創(chuàng)得利潤20 5 2.5 2 1.5 1.5 1.2

該公司每人所創(chuàng)年利潤的平均數(shù)是多少萬元?

2、下表是截至到20xx年費爾茲獎得主獲獎時的年齡,根據(jù)表格中的信息計算獲費爾茲獎得主獲獎時的平均年齡?

年齡頻數(shù)

28≤x

30≤x

32≤x

34≤x

36≤x

38≤x

40≤x

3、為調查居民生活環(huán)境質量,環(huán)保局對所轄的50個居民區(qū)進行了噪音(單位:分貝)水平的調查,結果如下圖,求每個小區(qū)噪音的平均分貝數(shù)。

答案:1.約2.95萬元2.約29歲3.60.54分貝

八年級數(shù)學上冊教案人教版篇5

一、教學目標

1、認識中位數(shù)和眾數(shù),并會求出一組數(shù)據(jù)中的眾數(shù)和中位數(shù)。

2、理解中位數(shù)和眾數(shù)的意義和作用。它們也是數(shù)據(jù)代表,可以反映一定的數(shù)據(jù)信息,幫助人們在實際問題中分析并做出決策。

3、會利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。

二、重點、難點和難點的突破方法:

1、重點:認識中位數(shù)、眾數(shù)這兩種數(shù)據(jù)代表

2、難點:利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。

3、難點的突破方法:

首先應交待清楚中位數(shù)和眾數(shù)意義和作用:

中位數(shù)僅與數(shù)據(jù)的排列位置有關,某些數(shù)據(jù)的變動對中位數(shù)沒有影響,中位數(shù)可能出現(xiàn)在所給的數(shù)據(jù)中,當一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,可用中位數(shù)描述其趨勢。眾數(shù)是當一組數(shù)據(jù)中某一重復出現(xiàn)次數(shù)較多時,人們往往關心的一個量,眾數(shù)不受極端值的影響,這是它的一個優(yōu)勢,中位數(shù)的計算很少不受極端值的影響。

教學過程中注重雙基,一定要使學生能夠很好的掌握中位數(shù)和眾數(shù)的求法,求中位數(shù)的步驟:⑴將數(shù)據(jù)由小到大(或由大到小)排列,⑵數(shù)清數(shù)據(jù)個數(shù)是奇數(shù)還是偶數(shù),如果數(shù)據(jù)個數(shù)為奇數(shù)則取中間的數(shù),如果數(shù)據(jù)個數(shù)為偶數(shù),則取中間位置兩數(shù)的平均值作為中位數(shù)。求眾數(shù)的方法:找出頻數(shù)最多的那個數(shù)據(jù),若幾個數(shù)據(jù)頻數(shù)都是最多且相同,此時眾數(shù)就是這多個數(shù)據(jù)。

在利用中位數(shù)、眾數(shù)分析實際問題時,應根據(jù)具體情況,課堂上教師應多舉實例,使同學在分析不同實例中有所體會。

三、例習題的意圖分析

1、教材p143的例4的意圖

(1)、這個問題的研究對象是一個樣本,主要是反映了統(tǒng)計學中常用到一種解決問題的方法:對于數(shù)據(jù)較多的研究對象,我們可以考察總體中的一個樣本,然后由樣本的研究結論去估計總體的情況。

(2)、這個例題另一個意圖是交待了當數(shù)據(jù)個數(shù)為偶數(shù)時,中位數(shù)的求法和解題步驟。(因為在前面有介紹中位數(shù)求法,這里不再重述)

(3)、問題2顯然反映學習中位數(shù)的意義:它可以估計一個數(shù)據(jù)占總體的相對位置,說明中位數(shù)是統(tǒng)計學中的一個重要的數(shù)據(jù)代表。

(4)、這個例題再一次體現(xiàn)了統(tǒng)計學知識與實際生活是緊密聯(lián)系的,所以應鼓勵學生學好這部分知識。

2、教材p145例5的意圖

(1)、通過例5應使學生明白通常對待銷售問題我們要研究的是眾數(shù),它代表該型號的產(chǎn)品銷售,以便給商家合理的建議。

(2)、例5也交待了眾數(shù)的求法和解題步驟(由于求法在前面已介紹,這里不再重述)

(3)、例5也反映了眾數(shù)是數(shù)據(jù)代表的一種。

四、課堂引入

嚴格的講教材本節(jié)課沒有引入的問題,而是在復習和延伸中位數(shù)的定義過程中拉開序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經(jīng)和同學們研究過了平均數(shù)的這個數(shù)據(jù)代表。它在分析數(shù)據(jù)過程中擔當了重要的角色,今天我們來共同研究和認識數(shù)據(jù)代表中的新成員——中位數(shù)和眾數(shù),看看它們在分析數(shù)據(jù)過程中又起到怎樣的作用。

五、例習題的`分析

教材p144例4,從所給的數(shù)據(jù)可以看到并沒有按照從小到大(或從大到小)的順序排列。因此,首先應將數(shù)據(jù)重新排列,通過觀察會發(fā)現(xiàn)共有12個數(shù)據(jù),偶數(shù)個可以取中間的兩個數(shù)據(jù)146、148,求其平均值,便可得這組數(shù)據(jù)的中位數(shù)。

教材p145例5,由表中第二行可以查到23.5號鞋的頻數(shù),因此這組數(shù)據(jù)的眾數(shù)可以得到,所提的建議應圍繞利于商家獲得較大利潤提出。

六、隨堂練習

1某公司銷售部有營銷人員15人,銷售部為了制定某種商品的銷售金額,統(tǒng)計了這15個人的銷售量如下(單位:件)

1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150

求這15個銷售員該月銷量的中位數(shù)和眾數(shù)。

假設銷售部負責人把每位營銷員的月銷售定額定為320件,你認為合理嗎?如果不合理,請你制定一個合理的銷售定額并說明理由。

2、某商店3、4月份出售某一品牌各種規(guī)格的空調,銷售臺數(shù)如表所示:

1匹1.2匹1.5匹2匹

3月12臺20臺8臺4臺

4月16臺30臺14臺8臺

根據(jù)表格回答問題:

商店出售的各種規(guī)格空調中,眾數(shù)是多少?

假如你是經(jīng)理,現(xiàn)要進貨,6月份在有限的資金下進貨單位將如何決定?

答案:1. (1)210件、210件(2)不合理。因為15人中有13人的銷售額達不到320件(320雖是原始數(shù)據(jù)的平均數(shù),卻不能反映營銷人員的一般水平),銷售額定為210件合適,因為它既是中位數(shù)又是眾數(shù),是大部分人能達到的額定。

2. (1)1.2匹(2)通過觀察可知1.2匹的銷售,所以要多進1.2匹,由于資金有限就要少進2匹空調。

七、課后練習

1.數(shù)據(jù)8、9、9、8、10、8、99、8、10、7、9、9、8的中位數(shù)是,眾數(shù)是

2.一組數(shù)據(jù)23、27、20、18、x、12,它的中位數(shù)是21,則x的值是.

3.數(shù)據(jù)92、96、98、100、x的眾數(shù)是96,則其中位數(shù)和平均數(shù)分別是( )

;4.c; 5.(1)15. (2)約97天

八年級數(shù)學上冊教案人教版篇6

教學目標:

1. 掌握三角形內角和定理及其推論;

2. 弄清三角形按角的分類, 會按角的大小對三角形進行分類;

3.通過對三角形分類的學習,使學生了解數(shù)學分類的基本思想,并會用方程思想去解決一些圖形中求角的問題。

4.通過三角形內角和定理的證明,提高學生的邏輯思維能力,同時培養(yǎng)學生嚴謹?shù)目茖W態(tài)

5. 通過對定理及推論的分析與討論,發(fā)展學生的求同和求異的思維能力,培養(yǎng)學生聯(lián)系與轉化的辯證思想。

教學重點:三角形內角和定理及其推論。

教學難點:三角形內角和定理的證明

教學用具:直尺、微機

教學方法:互動式,談話法

教學過程:

1、創(chuàng)設情境,自然引入

把問題作為教學的出發(fā)點,創(chuàng)設問題情境,激發(fā)學生學習興趣和求知欲,為發(fā)現(xiàn)新知識創(chuàng)造一個最佳的心理和認知環(huán)境。

問題1 三角形三條邊的關系我們已經(jīng)明確了,而且利用上述關系解決了一些幾何問題,那么三角形的三個內角有何關系呢?

問題2 你能用幾何推理來論證得到的關系嗎?

對于問題1絕大多數(shù)學生都能回答出來(小學學過的),問題2學生會感到困難,因為這個證明需添加輔助線,這是同學們第一次接觸的新知識―――“輔助線 ”。教師可以趁機告訴學生這節(jié)課將要學習的一個重要內容(板書課題)

新課引入的好壞在某種程度上關系到課堂教學的成敗,本節(jié)課從舊知識切入,特別是從知識體系考慮引入,“學習了三角形邊的關系,自然想到三角形角的關系怎樣呢?”使學生感覺本節(jié)課學習的內容自然合理。

2、設問質疑,探究嘗試

(1)求證:三角形三個內角的和等于

讓學生剪一個三角形,并把它的三個內角分別剪下來,再拼成一個平面圖形。這里教師設計了電腦動畫顯示具體情景。然后,圍繞問題設計以下幾個問題讓學生思考,教師進行學法指導。

問題1 觀察:三個內角拼成了一個 什么角?

問題2 此實驗給我們一個什么啟示?

(把三角形的三個內角之和轉化為一個平角)

問題3 由圖中ab與cd的關系,啟發(fā)我們畫一條什么樣的線,作為解決問題的橋梁?

其中問題2是解決本題的關鍵,教師可引導學生分析。對于問題3學生經(jīng)過思考會畫出此線的。這里教師要重點講解“輔助線”的有關知識。比如:為什么要畫這條線?畫這條線有什么作用?要讓學生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當轉化條件;恰當轉化結論;充分提示題目中各元素間的一些不明顯的關系,達到化難為易解決問題的目的。

(2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?

學生回答后,電腦顯示圖表。

(3)三角形中三個內角之和為定值 ,那么對三角形的其它角還有哪些特殊的關系呢?

問題1 直角三角形中,直角與其它兩個銳角有何關系?

問題2 三角形一個外角與它不相鄰的兩個內角有何關系?

問題3 三角形一個外角與其中的一個不相鄰內角有何關系?

其中問題1學生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學生經(jīng)過分析討論,得出結論并書寫證明過程。

這樣安排的目的有三點:第一,理解定理之后的延伸――推論,培養(yǎng)學生良好的學習習慣。第二,模仿定理的證明書寫格式,加強學生書寫能力。第三,提高學生靈活運用所學知識的能力。

3、三角形三個內角關系的定理及推論

通過上面四個例題的分析與討論,有利于學生基礎知識與基本能力的掌握與提高,同時更有利于學生創(chuàng)新意識與創(chuàng)造性思維能力的培養(yǎng),在練習、講評等教學環(huán)節(jié)中,形成師生之間的、學生之間的“雙向反饋”是很重要的。

4、變式訓練,鞏固提高

根據(jù)例4 的度數(shù)的求法,思考如下問題:

(3)如圖5,過d點畫ab的平行線mn,與ac、bc交于點m、n,則 的度數(shù)多少?

(4)當mn繞著點d旋轉過程中, 會有怎樣的變化?

提示:變化1 當直線mn與ac、bc的交點仍在線段ac、bc上時, =

變化2 當直線mn與ac的交點在線段ac上,與bc的交點在bc的延長線上時,

變化3 當直線mn與ac的交點在線段ac的延長線上,與bc的交點在線段bc上時, =

變化4當直線mn與ac、bc的交點在c點時, =

經(jīng)過這樣的變式、發(fā)展、學習,不僅使學生鞏固了所學的數(shù)學知識,也使學生體驗了數(shù)學的運動變化觀,使學生的思維得到了培養(yǎng)。

5、小結

通過設置問題:“本節(jié)在知識方面以及在思想方法方面你有怎樣的收獲?”師生以談話交流的形式進行小結。強調學生注意:輔助線的作用及運用定理及推論解決問題時,要善于抓住條件與結論的關系。

6、布置作業(yè)

a、書面作業(yè)p43#3

b、上交作業(yè)p42#16、17