高中數(shù)學(xué)必修2教案7篇

時間:2023-01-18 作者:Gourmand 備課教案

教案在書寫的過程中,老師務(wù)必要強(qiáng)調(diào)講授內(nèi)容要點(diǎn),在動筆寫教案之前,老師們都需要認(rèn)真回顧以往的教學(xué)經(jīng)驗(yàn),以下是范文社小編精心為您推薦的高中數(shù)學(xué)必修2教案7篇,供大家參考。

高中數(shù)學(xué)必修2教案7篇

高中數(shù)學(xué)必修2教案篇1

一. 學(xué)習(xí)目標(biāo)

(1)通過實(shí)例體會分布的意義與作用; (2)在表示樣本數(shù)據(jù)的過程中,學(xué)會列頻率分布表,畫頻率分布直方圖,頻率折線圖; (3)通過實(shí)例體會頻率分布直方圖,頻率折線圖,莖葉圖的各自特點(diǎn),從而恰當(dāng)?shù)倪x擇上述方法分析樣本的分布,準(zhǔn)確的作出總體估計。

二. 學(xué)習(xí)重點(diǎn)

三.學(xué)習(xí)難點(diǎn)

能通過樣本的頻率分布估計總體的分布。

四.學(xué)習(xí)過程 (一)復(fù)習(xí)引入

(1 )統(tǒng)計的核心問題是什么?

(2 )隨機(jī)抽樣的幾種常用方法有哪些?

(3)通過抽樣方法收集數(shù)據(jù)的目的是什么?

(二)自學(xué)提綱

1.我們學(xué)習(xí)了哪些統(tǒng)計圖?不同的統(tǒng)計圖適合描述什么樣的數(shù)據(jù)?

2.如何列頻率分布表?

3.如何畫頻率分布直方圖?基本步驟是什么?

4.頻率分布直方圖的縱坐標(biāo)是什么?

5.頻率分布直方圖中小長方形的面積表示什么?

6.頻率分布直方圖中小長方形的面積之和是多少?

(三)課前自測

1.從一堆蘋果中任取了20只,并得到了它們的質(zhì)量(單位:g)數(shù)據(jù)分布表如下:

分組 [90,100) [100,110) [110,120) [120,130) [130,140) [140,150) 頻數(shù) 1 2 3 10 1 則這堆蘋果中,質(zhì)量不小于120g的蘋果數(shù)約占蘋果總數(shù)的__________%. 2.關(guān)于頻率分布直方圖,下列說法正確的是( ) a.直方圖的高表示該組上的個體在樣本中出現(xiàn)的頻率 b.直方圖的高表示取某數(shù)的頻率 c.直方圖的高表示該組上的樣本中出現(xiàn)的頻率與組距的比值 d.直方圖的高表示該組上的個體在樣本中出現(xiàn)的頻數(shù)與組距的比值 3.已知樣本:10,8,6,13,8,10,12,11,7,8,9,11,9,12,9,10,11,11,12,那么頻率為0.2的范圍是( ) a、5.5-7.5 b、7.5-9.5 c、9.5-11.5 d、11.5-13.5 (四)探究教學(xué) 典例:城市缺水問題(自學(xué)教材65頁~68頁)

問題1.你認(rèn)為為了較為合理地確定出這個標(biāo)準(zhǔn),需要做哪些工作? 2.如何分析數(shù)據(jù)?根據(jù)這些數(shù)據(jù)你能得出用水量其他信息嗎? 知識整理: 1.頻率分布的概念: 頻率分布: 頻數(shù): 頻率:

2.畫頻率分布直方圖的步驟: (1).求極差: (2).決定組距與組數(shù) 組距: 組數(shù): (3).將數(shù)據(jù)分組 (4).列頻率分布表 (5).畫頻率分布直方圖 問題: .

1.月平均用水量在2.5—3之間的頻率是多少?

2.月均用水量最多的在哪個區(qū)間?

3.月均用水量小于4.5 的頻率是多少?

4.小長方形的面積=?

5.小長方形的面積總和=?

6.如果希望85%以上居民不超出標(biāo)準(zhǔn),如何制定標(biāo)準(zhǔn)?

7.直方圖有那些優(yōu)點(diǎn)和缺點(diǎn)?

例題講解: 例1有一個容量為50的樣本數(shù)據(jù)的分組的頻數(shù)如下: [12.5, 15.5) 3 [15.5, 18.5) 8 [18.5, 21.5) 9 [21.5, 24.5) 11 [24.5, 27.5) 10 [27.5, 30.5) 5 [30.5, 33.5) 4 (1)列出樣本的頻率分布表; (2)畫出頻率分布直方圖; (3)根據(jù)頻率分布直方圖估計,數(shù)據(jù)落在[15.5, 24.5)的百分比是多少? (4)數(shù)據(jù)小于21.5的百分比是多少?

3.頻率分布折線圖、總體密度曲線 問題1:如何得到頻率分布折線圖 ? 頻率分布折線圖的概念:

問題2:在城市缺水問題中將樣本容量為100,增至1000,其頻率分布直方圖的情況會有什么變化?假如增至10000呢?

總體密度曲線的概念:

注:用樣本分布直方圖去估計相應(yīng)的總體分布時,一般樣本容量越大,頻率分布直方圖就會無限接近總體密度曲線,就越精確地反映了總體的分布規(guī)律,即越精確地反映了總體在各個范圍內(nèi)1.總體分布指的是總體取值的頻率分布規(guī)律,由于總體分布不易知道,因此我們往往用樣本的頻率分布去估計總體的分布。

4. 莖葉圖 莖葉圖的概念: 莖葉圖的特征:

小結(jié):.總體的分布分兩種情況:當(dāng)總體中的個體取值很少時,用莖葉圖估計總體的分布;當(dāng)總體中的個體取值較多時,將樣本數(shù)據(jù)恰當(dāng)分組,用各組的頻率分布描述總體的分布,方法是用頻率分布表或頻率分布直方圖。

課堂小結(jié):

當(dāng)堂檢測:

1. 一個社會調(diào)查機(jī)構(gòu)就某地居民的月收入調(diào)查了10000人, 并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(如下圖)。 為了分析居民的收入與年齡、學(xué)歷、職業(yè)等方面的關(guān)系, 要從這10000人中再用分層抽樣方法抽出100人作進(jìn)一步 調(diào)查,則 [2500,3000)(元)月收入段應(yīng)抽取 人。

2、為了解某校高三學(xué)生的視力情況,隨機(jī)抽查了該校200名高三學(xué)生的視力情況,得到頻率分布直方圖(如圖), 由于不慎將部分?jǐn)?shù)據(jù)丟失,但知道前四組的頻數(shù)成等比數(shù) 列,后6組的頻數(shù)成等差數(shù)列,設(shè)最多一組學(xué)生數(shù)為a,視 力在4.6到5.0之間的頻率為b,則

a+b= . 3.在抽查產(chǎn)品的尺寸過程中,將其尺寸分成若干組,[a,b)是其中的一組,抽查出的個體在該組上的頻率為m,該組上的直方圖的高為h,則ba?=______. 4.為了了解中學(xué)生的身高情況,對育才中學(xué)同齡的50名男學(xué)生的身高進(jìn)行了測量,結(jié)果如下:(單位:cm): 175 168 180 176 167 181 162 173 171 177 171 171 174 173 174 175 177 166 163 160 166 166 163 169 174 165 175 165 170 158 174 172 166 172 167 172 175 161 173 167 170 172 165 157 172 173 166 177 169 181

(1)列出樣本的頻率分布表。

(2)畫出頻率分布直方圖。

(3)畫頻率分布折線圖;

高中數(shù)學(xué)必修2教案篇2

1教學(xué)目標(biāo)

1、知道柱體、錐體、臺體側(cè)面展開圖,弄懂柱體、錐體、臺體的表面積的求法。

2、能運(yùn)用公式求解柱體、錐體和臺體的表面積,并知道柱體、錐體和臺體表面積之間的關(guān)系。

2學(xué)情分析

通過學(xué)習(xí)空間幾何體的結(jié)構(gòu)特征,空間幾何體的三視圖和直觀圖,了解了空間幾何體和平面圖形之間的關(guān)系,從中反映出一個思想方法,即平面圖形和空間幾何體的互化,尤其是空間幾何問題向平面問題的轉(zhuǎn)化。該部分內(nèi)容中有些是學(xué)生已經(jīng)熟悉的,在解決這些問題的過程中,首先要對學(xué)生已有的知識進(jìn)行再認(rèn)識,提煉出解決問題的一般思想——化歸的思想,總結(jié)出一般的求解方法,在此基礎(chǔ)上通過類比獲得解決新問題的思路,通過化歸解決問題,深化對化歸、類比等思想方法的應(yīng)用。

3重點(diǎn)難點(diǎn)

重點(diǎn):知道柱體、錐體、臺體側(cè)面展開圖,弄懂柱體、錐體、臺體的表面積公式。

難點(diǎn):會求柱體、錐體和臺體的表面積,并知道柱體、錐體和臺體表面積之間的關(guān)系。

4教學(xué)過程 4.1 第一學(xué)時 教學(xué)活動 活動1【導(dǎo)入】第1課時柱體、錐體、臺體的表面積

(一)、基礎(chǔ)自測:

1、棱長為a的正方體表面積為__________.

2、長、寬、高分別為a、b、c的長方體,其表面積為___________________.

3、長方體、正方體的側(cè)面展開圖為__________.

4、圓柱的側(cè)面展開圖為__________.

5、圓錐的側(cè)面展開圖為__________.

(二)。嘗試學(xué)習(xí)

1、柱體的表面積

(1)側(cè)面展開圖:棱柱的側(cè)面展開圖是____________,一邊是棱柱的側(cè)棱,另一邊等于棱柱的__________,如圖①所示;圓柱的側(cè)面展開圖是_______,其中一邊是圓柱的母線,另一邊等于圓柱的底面周長,如圖②所示。

(2)面積:柱體的表面積s表=s側(cè)+2s底。特別地,圓柱的底面半徑為r,母線長為l,則圓柱的側(cè)面積s側(cè)=__________,表面積s表=__________.

2、錐體的表面積

(1)側(cè)面展開圖:棱錐的側(cè)面展開圖是由若干個__________拼成的,則側(cè)面積為各個三角形面積的_____,如圖①所示;圓錐的側(cè)面展開圖是_______,扇形的半徑是圓錐的______,扇形的弧長等于圓錐的__________,如圖②所示。

(2)面積:錐體的表面積s表=s側(cè)+s底。特別地,圓錐的底面半徑為r,母線長為l,則圓錐的側(cè)面積s側(cè)=__________,表面積s表=__________.

3、臺體的表面積

(1)側(cè)面展開圖:棱臺的側(cè)面展開圖是由若干個__________拼接而成的,則側(cè)面積為各個梯形面積的______,如圖①所示;圓臺的側(cè)面展開圖是扇環(huán),其側(cè)面積可由大扇形的面積減去小扇形的面積而得到,如圖②所示。

(2)面積:臺體的表面積s表=s側(cè)+s上底+s下底。特別地,圓臺的上、下底面半徑分別為r′,r,母線長為l,則側(cè)面積s側(cè)=____________,表面積s表=________________________.

(三)。互動課堂

例1:在三棱柱abc-a1b1c1中,∠bac=90°,ab=ac=a,∠aa1b1=∠aa1c1=60°,∠bb1c1=90°,側(cè)棱長為b,則其側(cè)面積為()

a. b.ab c.(+)ab d.ab

例2:(1)若一個圓錐的軸截面是等邊三角形,其面積為,則這個圓錐的側(cè)面積是()

a.2π b. c.6π d.9?

(2)已知棱長均為5,底面為正方形的四棱錐s-abcd,如圖,求它的側(cè)面積、表面積。

例3:一個四棱臺的上、下底面都為正方形,且上底面的中心在下底面的投影為下底面中心(正四棱臺)兩底面邊長分別為1,2,側(cè)面積等于兩個底面積之和,則這個棱臺的高為()

a. b.2 c. d.

(四)。鞏固練習(xí):

1、一個棱柱的側(cè)面展開圖是三個全等的矩形,矩形的長和寬分別為6 cm,4 cm,則該棱柱的側(cè)面積為________.

2、已知一個四棱錐底面為正方形且頂點(diǎn)在底面正方形射影為底面正方形的中心(正四棱錐),底面正方形的邊長為4 cm,高與斜高的夾角為30°,如圖所示,求正四棱錐的側(cè)面積________和表面積________(單位:cm2)。

3、如圖所示,圓臺的上、下底半徑和高的比為1:4:4,母線長為10,則圓臺的側(cè)面積為()

a.81π b.100π c.14π d.169?

(五)、 課堂小結(jié):

求柱體表面積的方法

(1)直棱柱的側(cè)面積等于它的底面周長和高的乘積;表面積等于它的側(cè)面積與上、下兩個底面的面積之和。

(2)求斜棱柱的側(cè)面積一般有兩種方法:一是定義法;二是公式法。所謂定義法就是利用側(cè)面積為各側(cè)面面積之和來求,公式法即直接用公式求解。

(3)求圓柱的側(cè)面積只需利用公式即可求解。

(4)求棱錐側(cè)面積的一般方法:定義法。

(5)求圓錐側(cè)面積的一般方法:公式法:s側(cè)=πrl.

(6)求棱臺側(cè)面積的一般方法:定義法。

(7)求圓臺側(cè)面積的一般方法:公式法s側(cè)=2(r+r′)l.

五、當(dāng)堂檢測

1、(2011·北京)某四棱錐的三視圖如圖所示,該四棱錐的表面積是()

a.32 b.16+16

c.48 d.16+32 網(wǎng)]

2、(2013·重慶)某幾何體的三視圖如圖所示,則該幾何體的表面積為()

a.180 b.200 c.220 d.240

3、(2013廣東)若一個圓臺的正視圖如圖所示,則其側(cè)面積等于()

a.6 b.6π c.3π d.6?

六、作業(yè):(1)課時闖關(guān)(今晚交)

七、課后反思:本節(jié)課你會哪些?還存在哪些問題?

1.3空間幾何體的表面積與體積

課時設(shè)計 課堂實(shí)錄

1.3空間幾何體的表面積與體積

1第一學(xué)時 教學(xué)活動 活動1【導(dǎo)入】第1課時柱體、錐體、臺體的表面積

(一)、基礎(chǔ)自測:

1、棱長為a的正方體表面積為__________.

2、長、寬、高分別為a、b、c的長方體,其表面積為___________________.

3、長方體、正方體的側(cè)面展開圖為__________.

4、圓柱的側(cè)面展開圖為__________.

5、圓錐的側(cè)面展開圖為__________.

(二)。嘗試學(xué)習(xí)

1、柱體的表面積

(1)側(cè)面展開圖:棱柱的側(cè)面展開圖是____________,一邊是棱柱的側(cè)棱,另一邊等于棱柱的__________,如圖①所示;圓柱的側(cè)面展開圖是_______,其中一邊是圓柱的母線,另一邊等于圓柱的底面周長,如圖②所示。

(2)面積:柱體的表面積s表=s側(cè)+2s底。特別地,圓柱的底面半徑為r,母線長為l,則圓柱的側(cè)面積s側(cè)=__________,表面積s表=__________.

2、錐體的表面積

(1)側(cè)面展開圖:棱錐的側(cè)面展開圖是由若干個__________拼成的,則側(cè)面積為各個三角形面積的_____,如圖①所示;圓錐的側(cè)面展開圖是_______,扇形的半徑是圓錐的______,扇形的弧長等于圓錐的__________,如圖②所示。

(2)面積:錐體的表面積s表=s側(cè)+s底。特別地,圓錐的底面半徑為r,母線長為l,則圓錐的側(cè)面積s側(cè)=__________,表面積s表=__________.

3、臺體的表面積

(1)側(cè)面展開圖:棱臺的側(cè)面展開圖是由若干個__________拼接而成的,則側(cè)面積為各個梯形面積的______,如圖①所示;圓臺的側(cè)面展開圖是扇環(huán),其側(cè)面積可由大扇形的面積減去小扇形的面積而得到,如圖②所示。

(2)面積:臺體的表面積s表=s側(cè)+s上底+s下底。特別地,圓臺的上、下底面半徑分別為r′,r,母線長為l,則側(cè)面積s側(cè)=____________,表面積s表=________________________.

(三)?;诱n堂

例1:在三棱柱abc-a1b1c1中,∠bac=90°,ab=ac=a,∠aa1b1=∠aa1c1=60°,∠bb1c1=90°,側(cè)棱長為b,則其側(cè)面積為()

a. b.ab c.(+)ab d.ab

例2:(1)若一個圓錐的軸截面是等邊三角形,其面積為,則這個圓錐的側(cè)面積是()

a.2π b. c.6π d.9?

(2)已知棱長均為5,底面為正方形的四棱錐s-abcd,如圖,求它的側(cè)面積、表面積。

例3:一個四棱臺的上、下底面都為正方形,且上底面的中心在下底面的投影為下底面中心(正四棱臺)兩底面邊長分別為1,2,側(cè)面積等于兩個底面積之和,則這個棱臺的高為()

a. b.2 c. d.

(四)。鞏固練習(xí):

1、一個棱柱的側(cè)面展開圖是三個全等的矩形,矩形的長和寬分別為6 cm,4 cm,則該棱柱的側(cè)面積為________.

2、已知一個四棱錐底面為正方形且頂點(diǎn)在底面正方形射影為底面正方形的中心(正四棱錐),底面正方形的邊長為4 cm,高與斜高的夾角為30°,如圖所示,求正四棱錐的側(cè)面積________和表面積________(單位:cm2)。

3、如圖所示,圓臺的上、下底半徑和高的比為1:4:4,母線長為10,則圓臺的側(cè)面積為()

a.81π b.100π c.14π d.169?

(五)、 課堂小結(jié):

求柱體表面積的方法

(1)直棱柱的側(cè)面積等于它的底面周長和高的乘積;表面積等于它的側(cè)面積與上、下兩個底面的面積之和。

(2)求斜棱柱的側(cè)面積一般有兩種方法:一是定義法;二是公式法。所謂定義法就是利用側(cè)面積為各側(cè)面面積之和來求,公式法即直接用公式求解。

(3)求圓柱的側(cè)面積只需利用公式即可求解。

(4)求棱錐側(cè)面積的一般方法:定義法。

(5)求圓錐側(cè)面積的一般方法:公式法:s側(cè)=πrl.

(6)求棱臺側(cè)面積的一般方法:定義法。

(7)求圓臺側(cè)面積的一般方法:公式法s側(cè)=2(r+r′)l.

五、當(dāng)堂檢測

1、(2011·北京)某四棱錐的三視圖如圖所示,該四棱錐的表面積是()

a.32 b.16+16

c.48 d.16+32 網(wǎng)]

2、(2013·重慶)某幾何體的三視圖如圖所示,則該幾何體的表面積為()

a.180 b.200 c.220 d.240

3、(2013廣東)若一個圓臺的正視圖如圖所示,則其側(cè)面積等于()

a.6 b.6π c.3π d.6?

六、作業(yè):(1)課時闖關(guān)(今晚交)

七、課后反思:本節(jié)課你會哪些?還存在哪些問題?

高中數(shù)學(xué)必修2教案篇3

第一章:空間幾何體

1.1.1柱、錐、臺、球的結(jié)構(gòu)特征

一、教學(xué)目標(biāo)

1.知識與技能

(1)通過實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。

(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進(jìn)行分類。

(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。

(4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。

2.過程與方法

(1)讓學(xué)生通過直觀感受空間物體,從實(shí)物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。

(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。

3.情感態(tài)度與價值觀

(1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時提高學(xué)生的觀察能力。

(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。

二、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。

難點(diǎn):柱、錐、臺、球的結(jié)構(gòu)特征的概括。

三、教學(xué)用具

(1)學(xué)法:觀察、思考、交流、討論、概括。

(2)實(shí)物模型、投影儀

四、教學(xué)思路

(一)創(chuàng)設(shè)情景,揭示課題

1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對學(xué)生的活動及時給予評價。

2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。

(二)、研探新知

1.引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。

2.觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點(diǎn)是什么?它們的共同特點(diǎn)是什么?

3.組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

4.教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。

5.提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對棱柱分類?

請列舉身邊具有已學(xué)過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?

6.以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。

7.讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。

8.引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。

9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。

10.現(xiàn)實(shí)世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結(jié)構(gòu)特征的物體組合而成。請列舉身邊具有已學(xué)過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?

(三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。

1.有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)

2.棱柱的何兩個平面都可以作為棱柱的底面嗎?

3.課本p8,習(xí)題1.1 a組第1題。

4.圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?

5.棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?

四、鞏固深化

練習(xí):課本p7 練習(xí)1、2(1)(2)

課本p8 習(xí)題1.1 第2、3、4題

五、歸納整理

由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容

六、布置作業(yè)

課本p8 練習(xí)題1.1 b組第1題

課外練習(xí) 課本p8 習(xí)題1.1 b組第2題

1.2.1 空間幾何體的三視圖(1課時)

一、教學(xué)目標(biāo)

1.知識與技能

(1)掌握畫三視圖的基本技能

(2)豐富學(xué)生的空間想象力

2.過程與方法

主要通過學(xué)生自己的親身實(shí)踐,動手作圖,體會三視圖的作用。

3.情感態(tài)度與價值觀

(1)提高學(xué)生空間想象力

(2)體會三視圖的作用

二、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):畫出簡單組合體的三視圖

難點(diǎn):識別三視圖所表示的空間幾何體

三、學(xué)法與教學(xué)用具

1.學(xué)法:觀察、動手實(shí)踐、討論、類比

2.教學(xué)用具:實(shí)物模型、三角板

四、教學(xué)思路

(一)創(chuàng)設(shè)情景,揭開課題

“橫看成嶺側(cè)看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體,這堂課我們主要學(xué)習(xí)空間幾何體的三視圖。

在初中,我們已經(jīng)學(xué)習(xí)了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側(cè)視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?

(二)實(shí)踐動手作圖

1.講臺上放球、長方體實(shí)物,要求學(xué)生畫出它們的三視圖,教師巡視,學(xué)生畫完后可交流結(jié)果并討論;

2.教師引導(dǎo)學(xué)生用類比方法畫出簡單組合體的三視圖

(1)畫出球放在長方體上的三視圖

(2)畫出礦泉水瓶(實(shí)物放在桌面上)的三視圖

學(xué)生畫完后,可把自己的作品展示并與同學(xué)交流,總結(jié)自己的作圖心得。

作三視圖之前應(yīng)當(dāng)細(xì)心觀察,認(rèn)識了它的基本結(jié)構(gòu)特征后,再動手作圖。

3.三視圖與幾何體之間的相互轉(zhuǎn)化。

(1)投影出示圖片(課本p10,圖1.2-3)

請同學(xué)們思考圖中的三視圖表示的幾何體是什么?

(2)你能畫出圓臺的三視圖嗎?

(3)三視圖對于認(rèn)識空間幾何體有何作用?你有何體會?

教師巡視指導(dǎo),解答學(xué)生在學(xué)習(xí)中遇到的困難,然后讓學(xué)生發(fā)表對上述問題的看法。

4.請同學(xué)們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學(xué)交流。

(三)鞏固練習(xí)

課本p12 練習(xí)1、2 p18習(xí)題1.2 a組1

(四)歸納整理

請學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖

(五)課外練習(xí)

1.自己動手制作一個底面是正方形,側(cè)面是全等的三角形的棱錐模型,并畫出它的三視圖。

2.自己制作一個上、下底面都是相似的正三角形,側(cè)面是全等的等腰梯形的棱臺模型,并畫出它的三視圖。

1.2.2 空間幾何體的直觀圖(1課時)

一、教學(xué)目標(biāo)

1.知識與技能

(1)掌握斜二測畫法畫水平設(shè)置的平面圖形的直觀圖。

(2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點(diǎn)。

2.過程與方法

學(xué)生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。

3.情感態(tài)度與價值觀

(1)提高空間想象力與直觀感受。

(2)體會對比在學(xué)習(xí)中的作用。

(3)感受幾何作圖在生產(chǎn)活動中的應(yīng)用。

二、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn)、難點(diǎn):用斜二測畫法畫空間幾何值的直觀圖。

三、學(xué)法與教學(xué)用具

1.學(xué)法:學(xué)生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。

2.教學(xué)用具:三角板、圓規(guī)

練習(xí)反饋

根據(jù)斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學(xué)生獨(dú)立完成后,教師檢查。

2.例2,用斜二測畫法畫水平放置的圓的直觀圖

教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構(gòu)造出一些點(diǎn)。

教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細(xì)板書畫法。

3.探求空間幾何體的直觀圖的畫法

(1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體abcd-a’b’c’d’的直觀圖。

教師引導(dǎo)學(xué)生完成,要注意對每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫好每一步,不能敷衍了事。

(2)投影出示幾何體的三視圖、課本p15圖1.2-9,請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握圖形尺寸大小之間的關(guān)系。

4.平行投影與中心投影

投影出示課本p17圖1.2-12,讓學(xué)生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點(diǎn)。

5.鞏固練習(xí),課本p16練習(xí)1(1),2,3,4

三、歸納整理

學(xué)生回顧斜二測畫法的關(guān)鍵與步驟

四、作業(yè)

1.書畫作業(yè),課本p17 練習(xí)第5題

2.課外思考 課本p16,探究(1)(2)

1.3.1柱體、錐體、臺體的表面積與體積

一、教學(xué)目標(biāo)

1、知識與技能

(1)通過對柱、錐、臺體的研究,掌握柱、錐、臺的表面積和體積的求法。

(2)能運(yùn)用公式求解,柱體、錐體和臺全的全積,并且熟悉臺體與術(shù)體和錐體之間的轉(zhuǎn)換關(guān)系。

(3)培養(yǎng)學(xué)生空間想象能力和思維能力。

2、過程與方法

講義1: 空 間 幾 何 體

一、教學(xué)要求:通過實(shí)物模型,觀察大量的空間圖形,認(rèn)識柱體、

錐體、臺體、球體及簡單組合體的結(jié)構(gòu)特征,并

能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡單物體的結(jié)

構(gòu)。

二、教學(xué)重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型,概括出柱體、錐體、臺體、球體的結(jié)構(gòu)特征。

三、教學(xué)難點(diǎn):柱、錐、臺、球的結(jié)構(gòu)特征的概括。

四、教學(xué)過程:

(一)、新課導(dǎo)入:

1、 導(dǎo)入:進(jìn)入高中,在必修②的第一、二章中,將繼續(xù)深入研究一些空間幾何圖形,即學(xué)習(xí)立體幾何,注意學(xué)習(xí)方法:直觀感知、操作確認(rèn)、思維辯證、度量計算。

(二)、講授新課:

1、 教學(xué)棱柱、棱錐的結(jié)構(gòu)特征:

①、討論:給一個長方體模型,經(jīng)過上、下兩個底面用刀垂直切,得到的幾何體有哪些公共特征?把這些幾何體用水平力

推斜后,仍然有哪些公共特征?

②、定義:有兩個面互相平行,其余各面都是四邊形,且

每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成

的幾何體叫棱柱。 → 列舉生活中的棱柱實(shí)例(三棱鏡、方磚、六角螺帽)。

結(jié)合圖形認(rèn)識:底面、側(cè)面、側(cè)棱、頂點(diǎn)、高、對角面、對角線。

③、分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

表示:棱柱abcde-a’b’c’d’e’

④、討論:埃及金字塔具有什么幾何特征?

⑤、定義:有一個面是多邊形,其余各面都是有一個公共頂點(diǎn)的三角形,由這些面所圍成的幾何體叫棱錐。

結(jié)合圖形認(rèn)識:底面、側(cè)面、側(cè)棱、頂點(diǎn)、高。 → 討論:棱錐如何分類及表示?

⑥、討論:棱柱、棱錐分別具有一些什么幾何性質(zhì)?有什么共同的性質(zhì)?

★棱柱:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都

是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形

★棱錐:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

2、 教學(xué)圓柱、圓錐的結(jié)構(gòu)特征:

① 討論:圓柱、圓錐如何形成?

② 定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體叫圓柱;以直角三角形的一條直角邊為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)所成的曲面所圍成的幾何體叫圓錐。

→結(jié)合圖形認(rèn)識:底面、軸、側(cè)面、母線、高。 → 表示方法 ③ 討論:棱柱與圓柱、棱柱與棱錐的共同特征? → 柱體、錐體。

④ 觀察書p2若干圖形,找出相應(yīng)幾何體;

三、鞏固練習(xí):

1、 已知圓錐的軸截面等腰三角形的腰長為 5cm,,面積為12cm,求圓錐的底面半徑。

2、已知圓柱的底面半徑為3cm,,軸截面面積為24cm,求圓柱的母線長。

3、正四棱錐的底面積為46cm,側(cè)面等腰三角形面積為6cm,求正四棱錐側(cè)棱。

(四)、 教學(xué)棱臺與圓臺的結(jié)構(gòu)特征:

① 討論:用一個平行于底面的平面去截柱體和錐體,所得幾何體有何特征?

② 定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分叫做棱臺;用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分叫做圓臺。

結(jié)合圖形認(rèn)識:上下底面、側(cè)面、側(cè)棱(母線)、頂點(diǎn)、高。討論:棱臺的分類及表示? 圓臺的表示?圓臺可如何旋轉(zhuǎn)而得?

③ 討論:棱臺、圓臺分別具有一些什么幾何性質(zhì)? 22

★ 棱臺:兩底面所在平面互相平行;兩底面是對應(yīng)邊互相平行的相似多邊形;側(cè)面是梯形;側(cè)棱的延長線相交于一點(diǎn)。

★ 圓臺:兩底面是兩個半徑不同的圓;軸截面是等腰梯形;任意兩條母線的延長線交于一點(diǎn);母線長都相等。

④ 討論:棱、圓與柱、錐、臺的組合得到6個幾何體。 棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐有什么關(guān)系? (以臺體的上底面變化為線索)

2.教學(xué)球體的結(jié)構(gòu)特征:

① 定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體,叫球體。結(jié)合圖形認(rèn)識:球心、半徑、直徑。→ 球的表示。

② 討論:球有一些什么幾何性質(zhì)?

③ 討論:球與圓柱、圓錐、圓臺有何關(guān)系?(旋轉(zhuǎn)體)棱臺與棱柱、棱錐有什么共性?(多面體)

3、 教學(xué)簡單組合體的結(jié)構(gòu)特征:

① 討論:礦泉水塑料瓶由哪些幾何體構(gòu)成?燈管呢?

② 定義:由柱、錐、臺、球等幾何結(jié)構(gòu)特征組合的幾何體叫簡單組合體。

4、 練習(xí):圓錐底面半徑為1cm,其中有一個內(nèi)接正方體,求這個內(nèi)接正方體的棱長。 (補(bǔ)充平行線分線段成比例定理)

(五)、鞏固練習(xí):

1、 已知長方體的長、寬、高之比為4∶3∶12,對角線長為26cm, 則長、寬、高分別為多少?

2、 棱臺的上、下底面積分別是25和81,高為4,求截得這棱臺的原棱錐的高

3、 若棱長均相等的`三棱錐叫正四面體,求棱長為a的正四面體的高。

★例題:用一個平行于圓錐底面的平面去截這個圓錐,截得的圓臺的上、下底面的半徑的比是1:4,截去的圓錐的母線長為3厘米,求此圓臺的母線之長。

●解:考查其截面圖,利用平行線的成比例,可得所求為9厘米。

★ 例題2:已知三棱臺abc—a′b′c′ 的上、下兩底均為正三角形,邊長分別為3和6,平行于底面的截面將側(cè)棱分為1:2兩部分,求截面的面積。(4)

★ 圓臺的上、下度面半徑分別為6和12,平行于底面的截面分高為2:1兩部分,求截面的面積。(100π)

▲ 解決臺體的平行于底面的截面問題,還臺為錐是行之有效的一種方法。

講義2、空間幾何體的三視圖和直視圖

一、教學(xué)要求:能畫出簡單幾何體的三視圖;能識別三視圖所表示的空間幾何體。 掌握斜二測畫法;能用斜二測

畫法畫空間幾何體的直觀圖。

二、教學(xué)重點(diǎn):畫出三視圖、識別三視圖。

三、教學(xué)難點(diǎn):識別三視圖所表示的空間幾何體。

四、教學(xué)過程:

(一)、新課導(dǎo)入:

1、 討論:能否熟練畫出上節(jié)所學(xué)習(xí)的幾何體?工程師如何制作工程設(shè)計圖紙?

2、 引入:從不同角度看廬山,有古詩:“橫看成嶺側(cè)成峰,遠(yuǎn)

近高低各不同。不識廬山真面目,只緣身在此山中。” 對

于我們所學(xué)幾何體,常用三視圖和直觀圖來畫在紙上。

三視圖:觀察者從不同位置觀察同一個幾何體,畫出的空間幾何體的圖形;直觀圖:觀察者站在某一點(diǎn)觀察幾何體,畫出的空間幾何體的圖形。 用途:工程建設(shè)、機(jī)械制造、日常生活。

(二)、講授新課:

1、 教學(xué)中心投影與平行投影:

① 投影法的提出:物體在光線的照射下,就會在地面或墻壁上

產(chǎn)生影子。人們將這種自然現(xiàn)象加以的抽象,總結(jié)其

中的規(guī)律,提出了投影的方法。

② 中心投影:光由一點(diǎn)向外散射形成的投影。其投影的大小隨

物體與投影中心間距離的變化而變化,所以其投影不

能反映物體的實(shí)形。

③ 平行投影:在一束平行光線照射下形成的投影。 分正投影、斜投影。

→討論:點(diǎn)、線、三角形在平行投影后的結(jié)果。

2、 教學(xué)柱、錐、臺、球的三視圖:

① 定義三視圖:正視圖(光線從幾何體的前面向后面正投影);

側(cè)視圖(從左向右)、俯視圖

② 討論:三視圖與平面圖形的關(guān)系? → 畫出長方體的三視圖,

并討論所反應(yīng)的長、寬、高

③ 結(jié)合球、圓柱、圓錐的模型,從正面(自前而后)、側(cè)面(自

左而右)、上面(自上而下)三個角度,分別觀察,畫出觀察得出的各種結(jié)果。 → 正視圖、側(cè)視圖、俯視圖

③ 試畫出:棱柱、棱錐、棱臺、圓臺的三視圖。 (

④ 討論:三視圖,分別反應(yīng)物體的哪些關(guān)系(上下、左右、前后)?哪些數(shù)量(長、寬、高)

正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;

俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;

側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

⑤ 討論:根據(jù)以上的三視圖,如何逆向得到幾何體的形狀。(試變化以上的三視圖,說出相應(yīng)幾何體的擺放)

3、 教學(xué)簡單組合體的三視圖:

① 畫出教材p16 圖(2)、(3)、(4)的

三視圖。

② 從教材p16思考中三視圖,說出幾何體。

4、 練習(xí):

① 畫出正四棱錐的三視圖。

④ 畫出右圖所示幾何體的三視圖。

③ 右圖是一個物體的正視圖、左視圖和俯視圖,

試描述該物體的形狀。

(三)復(fù)習(xí)鞏固

高中數(shù)學(xué)必修2教案篇4

一、向量的概念

1、既有又有的量叫做向量。用有向線段表示向量時,有向線段的長度表示向量的,有向線段的箭頭所指的方向表示向量的

2、叫做單位向量

3、的向量叫做平行向量,因?yàn)槿我唤M平行向量都可以平移到同一條直線上,所以平行向量也叫做。零向量與任一向量平行

4、且的向量叫做相等向量

5、叫做相反向量

二、向量的表示方法:幾何表示法、字母表示法、坐標(biāo)表示法

三、向量的加減法及其坐標(biāo)運(yùn)算

四、實(shí)數(shù)與向量的乘積

定義:實(shí)數(shù) λ 與向量 的積是一個向量,記作λ

五、平面向量基本定理

如果e1、e2是同一個平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實(shí)數(shù)λ1,λ2,使a=λ1e1+λ2e2 ,其中e1,e2叫基底

六、向量共線/平行的充要條件

七、非零向量垂直的充要條件

八、線段的定比分點(diǎn)

設(shè)是上的 兩點(diǎn),p是上_________的任意一點(diǎn),則存在實(shí)數(shù),使_______________,則為點(diǎn)p分有向線段所成的比,同時,稱p為有向線段的定比分點(diǎn)

定比分點(diǎn)坐標(biāo)公式及向量式

九、平面向量的數(shù)量積

(1)設(shè)兩個非零向量a和b,作oa=a,ob=b,則∠aob=θ叫a與b的夾角,其范圍是[0,π],|b|cosθ叫b在a上的投影

(2)|a||b|cosθ叫a與b的數(shù)量積,記作a·b,即 a·b=|a||b|cosθ

(3)平面向量的數(shù)量積的坐標(biāo)表示

十、平移

典例解讀

1、給出下列命題:①若|a|=|b|,則a=b;②若a,b,c,d是不共線的四點(diǎn),則ab= dc是四邊形abcd為平行四邊形的充要條件;③若a=b,b=c,則a=c;④a=b的充要條件是|a|=|b|且a∥b;⑤若a∥b,b∥c,則a∥c

其中,正確命題的序號是______

2、已知a,b方向相同,且|a|=3,|b|=7,則|2a-b|=____

3、若將向量a=(2,1)繞原點(diǎn)按逆時針方向旋轉(zhuǎn) 得到向量b,則向量b的坐標(biāo)為_____

4、下列算式中不正確的是( )

(a) ab+bc+ca=0 (b) ab-ac=bc

(c) 0·ab=0 (d)λ(μa)=(λμ)a

5、若向量a=(1,1),b=(1,-1),c=(-1,2),則c=( )

?函數(shù)y=x2的圖象按向量a=(2,1)平移后得到的圖象的函數(shù)表達(dá)式為( )

(a)y=(x-2)2-1 (b)y=(x+2)2-1 (c)y=(x-2)2+1 (d)y=(x+2)2+1

7、平面直角坐標(biāo)系中,o為坐標(biāo)原點(diǎn),已知兩點(diǎn)a(3,1),b(-1,3),若點(diǎn)c滿足oc=αoa+βob,其中a、β∈r,且α+β=1,則點(diǎn)c的軌跡方程為( )

(a)3x+2y-11=0 (b)(x-1)2+(y-2)2=5

(c)2x-y=0 (d)x+2y-5=0

8、設(shè)p、q是四邊形abcd對角線ac、bd中點(diǎn),bc=a,da=b,則 pq=_________

9、已知a(5,-1) b(-1,7) c(1,2),求△abc中∠a平分線長

10、若向量a、b的坐標(biāo)滿足a+b=(-2,-1),a-b=(4,-3),則a·b等于( )

(a)-5 (b)5 (c)7 (d)-1

11、若a、b、c是非零的平面向量,其中任意兩個向量都不共線,則( )

(a)(a)2·(b)2=(a·b)2 (b)|a+b|>|a-b|

(c)(a·b)·c-(b·c)·a與b垂直 (d)(a·b)·c-(b·c)·a=0

12、設(shè)a=(1,0),b=(1,1),且(a+λb)⊥b,則實(shí)數(shù)λ的值是( )

(a)2 (b)0 (c)1 (d)2

16、利用向量證明:△abc中,m為bc的中點(diǎn),則 ab2+ac2=2(am2+mb2)

17、在三角形abc中, =(2,3), =(1,k),且三角形abc的一個內(nèi)角為直角,求實(shí)數(shù)k的值

18、已知△abc中,a(2,-1),b(3,2),c(-3,-1),bc邊上的高為ad,求點(diǎn)d和向量

高中數(shù)學(xué)必修2教案篇5

一、教材分析

在上一節(jié)認(rèn)識空間幾何體結(jié)構(gòu)特征的基礎(chǔ)上,本節(jié)來學(xué)習(xí)空間幾何體的表示形式,以進(jìn)一步提高對空間幾何體結(jié)構(gòu)特征的認(rèn)識.主要內(nèi)容是:畫出空間幾何體的三視圖.

比較準(zhǔn)確地畫出幾何圖形,是學(xué)好立體幾何的一個前提.因此,本節(jié)內(nèi)容是立體幾何的基礎(chǔ)之一,教學(xué)中應(yīng)當(dāng)給以充分的重視.

畫三視圖是立體幾何中的基本技能,同時,通過三視圖的學(xué)習(xí),可以豐富學(xué)生的空間想象力.“視圖”是將物體按正投影法向投影面投射時所得到的投影圖.光線自物體的前面向后投影所得的投影圖稱為“正視圖”,自左向右投影所得的投影圖稱為“側(cè)視圖”,自上向下投影所得的投影圖稱為“俯視圖”.用這三種視圖即可刻畫空間物體的幾何結(jié)構(gòu),這種圖稱之為“三視圖”.

教科書從復(fù)習(xí)初中學(xué)過的正方體、長方體……的三視圖出發(fā),要求學(xué)生自己畫出球、長方體的三視圖;接著,通過“思考”提出了“由三視圖想象幾何體”的學(xué)習(xí)任務(wù).進(jìn)行幾何體與其三視圖之間的相互轉(zhuǎn)化是高中階段的新任務(wù),這是提高學(xué)生空間想象力的需要,應(yīng)當(dāng)作為教學(xué)的一個重點(diǎn).

三視圖的教學(xué),主要應(yīng)當(dāng)通過學(xué)生自己的親身實(shí)踐,動手作圖來完成.因此,教科書主要通過提出問題,引導(dǎo)學(xué)生自己動手作圖 來展示教學(xué)內(nèi)容.教學(xué)中,教師可以通過提出問題,讓學(xué)生在動手實(shí)踐的過程中學(xué)會三視 圖的作法,體會三視圖的作用.對于簡單幾何體的組合體,在作三視圖之前應(yīng)當(dāng)提醒學(xué)生細(xì)心觀察,認(rèn)識了它的基本結(jié)構(gòu)特征后,再動手作圖.教材中的“探究”可以作為作業(yè),讓學(xué)生在課外完成后,再把自己的作品帶到課堂上來展示交流.

值得注意的問題是三視圖的教學(xué),主要應(yīng)當(dāng)通過學(xué)生自己的親身實(shí)踐、動手作圖來完成.另外,教學(xué)中還可以借助于信息技術(shù)向?qū)W生多展示一些圖片,讓學(xué)生辨析它們是平行投影下的圖形還是中心投影下的圖形.

二、教學(xué)目標(biāo)

1.知識與技能

(1)掌握畫三視圖的基本技能

(2)豐富學(xué)生的空間想象力

2.過程與方法

主要通過學(xué)生自己的親身實(shí)踐,動手作圖,體會三視圖的作用。

3.情感、態(tài)度與價值觀

(1)提高學(xué)生空間想象力

(2)體會三視圖的作用

三、重點(diǎn)難點(diǎn)

教學(xué)重點(diǎn):畫出簡單組合體的三視圖,給出三視圖和直觀圖,還原或想象出原實(shí)際圖的結(jié)構(gòu)特征.

教學(xué)難點(diǎn):識別三視圖所表示的幾何體.

四、課時安排

1課時

五、教學(xué)設(shè)計

(一)導(dǎo)入新課

思路1.能否熟練畫出上節(jié)所學(xué)習(xí)的幾何體?工程師如何制作工程設(shè)計圖紙?

我們常用三視圖和直觀圖表示空間幾何體,三視圖是觀察者從三個不同位置觀察同一個幾何體而畫出的圖形;直觀圖是觀察者站在某一點(diǎn)觀察幾何體而畫出的圖形.三視圖和直觀圖在工程建設(shè)、機(jī)械制造以及日常生活中具有重要意義.本節(jié)我們將在學(xué)習(xí)投影知識的基礎(chǔ)上,學(xué)習(xí)空間幾何體的三視圖.

教師指出課題:投影和三視圖.

思路2.

“橫看成嶺側(cè)成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實(shí)地反映出物體的結(jié)構(gòu)特征,我們可從多角度觀看物體,這堂課我們主要學(xué)習(xí)空間幾何體的三視圖.在初中,我們已經(jīng)學(xué)習(xí)了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側(cè)視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?

教師點(diǎn)出課題:投影和三視圖.

(二)推進(jìn)新課、新知探究、提出問題

①如圖1所示的五個圖片是我國民間藝術(shù)皮影戲中的部分片斷,請同學(xué)們考慮它們是怎樣得到的?

圖1

②通過觀察和自己的認(rèn)識,你是怎樣來理解投影的含義的?

③請同學(xué)們觀察圖2的投影過程,它們的投影過程有什么不同?

圖2

④圖2(2)(3)都是平行投影,它們有什么區(qū)別?

⑤觀察圖3,與投影面平行的平面圖形,分別在平行投影和中心投影下的影子和原圖形的形狀、大小有什么區(qū)別?

圖3

活動:①教師介紹中國的民間藝術(shù)皮影戲,學(xué)生觀察圖片.

②從投影的形成過程來定義.

③從投影方向上來區(qū)別這三種投影.

④根據(jù)投影線與投影面是否垂直來區(qū)別.

⑤觀察圖3并歸納總結(jié)它們各自的特點(diǎn).

討論結(jié)果:①這種現(xiàn)象我們把它稱為是投影.

②由于光的照射,在不透明物體后面的屏幕上可以留下這個物體的影子,這種現(xiàn)象叫做投影.其中,我們把光線叫做投影線,把留下物體影子的屏幕叫做投影幕.

③圖2(1)的投影線交于一點(diǎn),我們把光由一點(diǎn)向外散射形成的投影稱為中心投影;圖2(2)和(3)的投影線平行,我們把在一束平行光 線照射下形成投影稱為平行投影.

④圖2(2)中,投影線正對著投影面,這種平行投影稱為正投影;圖2(3)中,投影線不是正對著投影面,這種平行投影稱為斜投影.

⑤在平行投影下,與投影面平行的平面圖形留下的影子和原平面圖形是全等的平面圖形;在中心投影下,與投影面平行的平面圖形留下的影子和原平面圖形是相似的平面圖形.以后我們用正投影的方法來畫出空間幾何體的三視圖和 直觀圖.

知識歸納:投影的分類如圖4所示.

圖4

提出問題

①在初中,我們已經(jīng)學(xué)習(xí)了正方體、長方體、圓柱、圓錐、球的三視圖,請你回憶三視圖包含哪些部分?

②正視圖、側(cè)視圖和俯視圖各是如何得到的?

③一般地,怎樣排列三視圖?

④正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到的幾何體的正投影圖,它們都是平面圖形.觀察長方體的三視圖,你能得出同一個幾何體的正視圖、側(cè)視圖和俯視圖在形狀、大小方面的關(guān)系嗎?

討論結(jié)果:①三視圖包含正視圖、側(cè)視圖和俯視圖.

②光線從幾何體的前面向后面正投影,得到的投影圖叫該幾何體的正視圖(又稱主視圖);光線從幾何體的左面向右面正投影,得到的投影圖叫該幾何體的側(cè)視圖(又稱左視圖);光線從幾何體的上面向下面正投影,得到的投影圖叫該幾何體的俯視圖.

③三視圖的位置關(guān)系:一般地,側(cè)視圖在正視圖的右邊;俯視圖在正視圖的下邊.如圖5所示.

圖5

④投影規(guī)律:

(1)正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;

俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;

側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度.

(2)一個幾何體的正視圖和側(cè)視圖高度一樣,正視圖和俯視圖長度一樣,側(cè)視圖和俯視圖寬度一樣,即正、俯視圖——長對正;主、側(cè)視圖——高平齊;俯、側(cè)視圖——寬相等.

畫組合體的三視圖時要注意的問題:

(1)要確定好主視、側(cè)視、俯視的方向,同一物體三視的方向不同,所畫的三視圖可能不同.

(2)判斷簡單組合體的三視圖是由哪幾個基本幾何體生成的,注意它們的生成方式,特別是它們的交線位置.

(3)若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,分界線和可見輪廓線都用實(shí)線畫出,不可見輪廓線,用虛線畫出.

( 4)要檢驗(yàn)畫出的三視圖是否符合“長對正、高平齊、寬相等”的基本特征,即正、俯視圖長對正;正、側(cè)視圖高平齊;俯、側(cè)視圖寬相等,前后對應(yīng).

由三視圖還原為實(shí)物圖時要注意的問題:

我們由實(shí)物圖可以畫出它的三視圖,實(shí)際生產(chǎn)中,工人要根據(jù)三視圖加工零件,需要由三視圖還原成實(shí)物圖,這要求我們能由三視圖想象它的空間實(shí)物形狀,主要 通過主、俯、左視圖的輪廓線(或補(bǔ)充后的輪廓線)還原成常見的幾何體,還原實(shí)物圖時,要先從三視圖中初步判斷簡單組合體的組成,然后利用輪廓線(特別要注意虛線)逐步作出實(shí)物圖.

(三)應(yīng)用示例

思路1

例1 畫出圓柱和圓錐的三視圖.

活動:學(xué)生回顧正投影和三視圖的畫法,教師引導(dǎo)學(xué)生自己完成.

解:圖6(1)是圓柱的三視圖,圖6(2)是圓錐的三視圖.

(1) (2)

圖6

點(diǎn)評:本題主要考查簡單幾何體的三視圖和空間想象能力.有關(guān)三視圖的題目往往依賴于豐富的空間想象能力.要做到邊想著幾何體的實(shí)物圖邊畫著三視圖,做到想圖(幾何體的實(shí)物圖)和畫圖(三視圖)相結(jié)合.

變式訓(xùn)練

說出下列圖7中兩個三視圖分別表示的幾何體.

(1) (2)

圖7

答案:圖7(1)是正六棱錐; 圖7(2)是兩個相同的圓臺組成的組合體.

例2 試畫出圖8所示的礦泉水瓶的三視圖.

活動:引導(dǎo)學(xué)生認(rèn)識這種容器的結(jié)構(gòu)特征.礦泉水瓶是我們熟悉的一種容器,這種容器是簡單的組合體,其主要結(jié)構(gòu)特征是從上往下分別是圓柱、圓臺和圓柱.

圖8 圖9

解:三視圖如圖9所示.

點(diǎn)評:本題主要考查簡單組合體的三視圖.對于簡單空間幾何體的組合體,一定要認(rèn)真觀察,先認(rèn)識它的基本結(jié)構(gòu),然后再畫它的三視圖.

變式訓(xùn)練

畫出圖10所示的幾何體的三視圖.

圖10 圖11

答案:三視圖 如圖11所示.

思路2

例1 (2007安徽淮南高三第一次模擬,文16)如圖12甲所示,在正方體abcd—a1b1c1d1中,e、f分別是aa1、c1d1的中點(diǎn),g是正方形bcc1b1的中心,則四邊形agfe在該正方體的各個面上的投影可能是圖12乙中的____________.

甲 乙

圖12

活動:要畫出四邊形agfe在該正方體的各個面上的投影,只需畫出四個頂點(diǎn)a、g、f、e在每個面上的投影,再順次連接即得到在該面上的投影,并且在兩個平行平面上的投影是相同的.

分析:在面abcd和面a1b1c1d1上的投影是圖12乙(1);在面add1a1和面bcc1b1上的投影是圖12乙(2);在面abb1a1和面dcc1d1上的投影是圖12乙(3).

答案:(1)(2)(3)

點(diǎn)評:本題主要考查平行投影和空間想象能力.畫出一個圖形在一個平面上的投影的關(guān)鍵是確定該圖形的關(guān)鍵點(diǎn),如頂點(diǎn)等,畫出這 些關(guān)鍵點(diǎn)的投影,再依次連接即可得此圖形在該平面上的投影.如果對平行投影理解不充分,做該類題目容易出現(xiàn)不知所措的情形,避免出現(xiàn)這種情況的方法是依據(jù)平行投影的含義,借助于空間想象來完 成.

變式訓(xùn)練

如圖13(1)所示,e、f分別為正方體面add′a′、面bcc′b′的中心,則四邊形bfd′e在該正方體的各個面上的投影可能是圖13(2)的___________.

(1) (2)

圖13

分析:四邊形bfd′e在正方體abcd—a′b′c′d′的面add′a′、面bcc′b′上的投影是c;在面dcc′d′上的投影是b;同理,在面abb′a′、面abcd、面a′b′c′d′上的投影也全是b.

答案:b c

例2 (2007廣東惠州第二次調(diào)研,文2)如圖14所示,甲、乙、丙是三個立體圖形的三視圖,甲、乙、丙對應(yīng)的標(biāo)號正確的是( )

甲 乙 丙

圖14

①長方體 ②圓錐 ③三棱錐 ④圓柱

a.④③② b.②①③ c.①②③ d.③②④

分析:由于甲的俯視圖是圓,則該幾何體是旋轉(zhuǎn)體,又因正視圖和側(cè)視圖均是矩形,則甲是圓柱;由于乙的俯視圖是三角形,則該幾何體是多面體,又因正視圖和側(cè)視圖均是三角形,則該多面體的各個面都是三角形,則乙是三棱錐;由于丙的俯視圖是圓,則該幾何體是旋轉(zhuǎn)體,又因正視圖和側(cè)視圖均是三角形,則丙是圓錐.

答案:a

點(diǎn)評:本題主要考查三視圖和簡單幾何體的結(jié)構(gòu)特征.根據(jù)三視圖想象空間幾何體,是培養(yǎng)空間想象能力的重要方式,這需要根據(jù)幾何體的正視圖、側(cè)視圖、俯視圖的幾何特征,想象整個幾何體的幾何特征,從而判斷三視圖所描述的幾何體.通常是先根據(jù)俯視圖判斷是多面體還是旋轉(zhuǎn)體,再結(jié)合正視圖和側(cè)視圖確定具體的幾何結(jié)構(gòu)特征,最終確定是簡單幾何體還是簡單組合體.

變式訓(xùn)練

1.圖15是一幾何體的三視圖,想象該幾何體的幾何結(jié)構(gòu)特征,畫出該幾何體的形狀.

圖15 圖16

分析:由于俯視圖有一個圓和一個四邊形,則該幾何體是由旋轉(zhuǎn)體和多面體拼接成的組合體,結(jié)合側(cè)視圖和正視圖,可知該幾何體是上面一個圓柱,下面是一個四棱柱拼接成的組合體.

答案:上面一個圓柱,下面是一個四棱柱拼接成的組合體.該幾何體的形狀如圖16所示.

2.(2007山東高考,理3)下列幾何體各自的三視圖中,有且僅有兩個視圖相同的是( )

圖17

a.①② b.①③ c.①④ d.②④

分析:正方體的三視圖都是正方形,所以①不符合題意,排除a、b、c.

答案:d

點(diǎn)評:雖然三視圖的畫法比較繁瑣,但是三視圖是考查空間想象能力的重要形式,因此是新課標(biāo)高考的必考內(nèi)容之一,足夠的空間想象能力才能保證順利解決三視圖問題.

(四)知能訓(xùn)練

1.下列各項(xiàng)不屬于三視圖的是( )

a.正視圖 b.側(cè)視圖 c.后視圖 d.俯視圖

分析:根據(jù)三視圖的規(guī)定,后視圖不屬于三視圖.

答案:c

2.兩條相交直線的平行投影是( )

a.兩條相交直線 b.一條直線

c.兩條平行直線 d.兩條相交直線或一條直線

圖18

分析:借助于長方體模型來判斷,如圖18所示,在長方體abcd—a1b1c1d1中,一束平行光線從正上方向下照射.則相交直線cd1和dc1在面abcd上的平行投影是同一條直線cd,相交直線cd1和bd1在面abcd上的平行投影是兩條相交直線cd和bd.

答案:d

3.甲、乙、丙、丁四人分別面對面坐在一個四邊形桌子旁邊,桌上一張紙上寫著數(shù)字“9”,如圖19所示.甲說他看到的是“6”,乙說他看到的是“ 6”,丙說他看到的是“ 9”,丁說他看到的是“9”,則下列說法正確的是( )

圖19

a.甲在丁的對面,乙在甲的左邊,丙在丁的右邊

b.丙在乙的對面,丙的左邊是甲,右邊是乙

c.甲在乙的對面,甲的右邊是丙,左邊是丁

d.甲在丁的對面,乙在甲的右邊,丙在丁的右邊

分析:由甲、乙、丙、丁四人的敘述,可以知道這四人的位置如圖20所示,由此可得甲在丁的對面,乙在甲的右邊,丙在丁的右邊.

圖20

答案:d

4.(2007廣東汕頭模擬,文3)如果一個空間幾何體的正視圖與側(cè)視圖均為全等的等邊三角形,俯視圖為一個圓及其圓心,那么這個幾何體為( )

a.棱錐 b.棱柱 c.圓錐 d.圓柱

分析:由于俯視圖是一個圓及其圓心,則該幾何體是旋轉(zhuǎn)體,又因正視圖與側(cè)視圖均為全等的等邊三角形,則該幾何體是圓錐.

答案:c

5.(2007山東青島高三期末統(tǒng)考,文5)某幾何體的三視圖如圖21所示,那么這個幾何體是( )

圖21

a.三棱錐 b.四棱錐 c.四棱臺 d.三棱臺

分析:由所給三視圖可以判定對應(yīng)的幾何體是四棱錐.

答案:b

6.(2007山東濟(jì)寧期末統(tǒng)考,文5)用若干塊相同的小正方體搭成一個幾何體,該幾何體的三視圖如圖22所示,則搭成該幾何體需要的小正方體的塊數(shù)是( )

圖22

a.8 b.7 c.6 d.5

分析:由正視圖和側(cè)視圖可知,該幾何體有兩層小正方體拼接成,由俯視圖,可知最下層有5個小正方體,由側(cè)視圖可知上層僅有一個正方體,則共有6個小正方體.

答案:c

7.畫出圖23所示正四棱錐的三視圖.

圖23

分析:正四棱錐的正視圖與側(cè)視圖均為等腰三角形,俯視圖為正方形,對角線體現(xiàn)正四棱錐的四條側(cè)棱.

答案:正四棱錐的三視圖如圖24.

圖24

(五)拓展提升

問題:用數(shù)個小正方體組成一個幾何體,使它的正視圖和俯視圖如圖25所示,俯視圖中小正方形中的字母表示在該位置的小立方體的個數(shù).

(1)你能確定 哪些字母表示的數(shù)?

(2)該幾何體可能有多少種不同的形狀?

圖25

分析:解決本題的關(guān)鍵在于觀察正視圖、俯視圖,利用三視圖規(guī)則中的“在三視圖中,每個視圖都反映物體兩個方向的尺寸.正視圖反映物體的上下和左右尺寸,俯視圖反映物體的前后和左右尺寸,側(cè)視圖反映物體的前后和上下尺寸”.又“正視圖與俯視圖長對正,正視圖與側(cè)視圖高平齊,俯視圖與側(cè)視圖寬相等”,所以,我們可以得到a=3,b=1,c=1,d,e,f中的最大值為2.

解:(1)面對數(shù)個小立方體組成的幾何體,根據(jù)正視圖與俯視圖的觀察我們可以得出下列結(jié)論:

①a=3,b=1,c=1;

②d,e,f中的最大值為2.

所以上述字母中我們可以確定的是a=3,b=1,c=1.

(2)當(dāng)d,e,f中有一個是2時,有3種不同的形狀;

當(dāng)d,e,f有兩個是2時,有3種不同的形狀;

當(dāng)d,e,f都是2時,有一種形狀.

所以 該幾何體可能有7種不同的形狀.

(六)課堂小結(jié)

本節(jié)課學(xué)習(xí)了:

1.中心投影和平行投影.

2.簡單幾何體和組合體的三視圖的畫法及其投影規(guī)律.

3.由三視圖判斷原幾何體的結(jié)構(gòu)特征.

(七)作業(yè)

習(xí)題1.2 a 組 第1、2題.

高中數(shù)學(xué)必修2教案篇6

一、教材分析

教材的地位和作用

期望是概率論和數(shù)理統(tǒng)計的重要概念之一,是反映隨機(jī)變量取值分布的特征數(shù),學(xué)習(xí)期望將為今后學(xué)習(xí)概率統(tǒng)計知識做鋪墊。同時,它在市場預(yù)測,經(jīng)濟(jì)統(tǒng)計,風(fēng)險與決策等領(lǐng)域有著廣泛的應(yīng)用,為今后學(xué)習(xí)數(shù)學(xué)及相關(guān)學(xué)科產(chǎn)生深遠(yuǎn)的影響。

教學(xué)重點(diǎn)與難點(diǎn)

重點(diǎn):離散型隨機(jī)變量期望的概念及其實(shí)際含義。

難點(diǎn):離散型隨機(jī)變量期望的實(shí)際應(yīng)用。

[理論依據(jù)]本課是一節(jié)概念新授課,而概念本身具有一定的抽象性,學(xué)生難以理解,因此把對離散性隨機(jī)變量期望的概念的教學(xué)作為本節(jié)課的教學(xué)重點(diǎn)。此外,學(xué)生初次應(yīng)用概念解決實(shí)際問題也較為困難,故把其作為本節(jié)課的教學(xué)難點(diǎn)。

二、教學(xué)目標(biāo)

[知識與技能目標(biāo)]

通過實(shí)例,讓學(xué)生理解離散型隨機(jī)變量期望的概念,了解其實(shí)際含義。

會計算簡單的離散型隨機(jī)變量的期望,并解決一些實(shí)際問題。

[過程與方法目標(biāo)]

經(jīng)歷概念的建構(gòu)這一過程,讓學(xué)生進(jìn)一步體會從特殊到一般的思想,培養(yǎng)學(xué)生歸納、概括等合情推理能力。

通過實(shí)際應(yīng)用,培養(yǎng)學(xué)生把實(shí)際問題抽象成數(shù)學(xué)問題的能力和學(xué)以致用的數(shù)學(xué)應(yīng)用意識。

[情感與態(tài)度目標(biāo)]

通過創(chuàng)設(shè)情境激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的情感,培養(yǎng)其嚴(yán)謹(jǐn)治學(xué)的態(tài)度。在學(xué)生分析問題、解決問題的過程中培養(yǎng)其積極探索的精神,從而實(shí)現(xiàn)自我的價值。

三、教法選擇

引導(dǎo)發(fā)現(xiàn)法

四、學(xué)法指導(dǎo)

“授之以魚,不如授之以漁”,注重發(fā)揮學(xué)生的主體性,讓學(xué)生在學(xué)習(xí)中學(xué)會怎樣發(fā)現(xiàn)問題、分析問題、解決問題。

高中數(shù)學(xué)必修2教案篇7

教學(xué)準(zhǔn)備

教學(xué)目標(biāo)

一、知識與技能

(1)理解并掌握弧度制的定義;(2)領(lǐng)會弧度制定義的合理性;(3)掌握并運(yùn)用弧度制表示的弧長公式、扇形面積公式;(4)熟練地進(jìn)行角度制與弧度制的換算;(5)角的集合與實(shí)數(shù)集 之間建立的一一對應(yīng)關(guān)系。(6) 使學(xué)生通過弧度制的學(xué)習(xí),理解并認(rèn)識到角度制與弧度制都是對角度量的方法,二者是辨證統(tǒng)一的,而不是孤立、割裂的關(guān)系。

二、過程與方法

創(chuàng)設(shè)情境,引入弧度制度量角的大小,通過探究理解并掌握弧度制的定義,領(lǐng)會定義的合理性。根據(jù)弧度制的定義推導(dǎo)并運(yùn)用弧長公式和扇形面積公式。以具體的實(shí)例學(xué)習(xí)角度制與弧度制的互化,能正確使用計算器。

三、情態(tài)與價值

通過本節(jié)的學(xué)習(xí),使同學(xué)們掌握另一種度量角的單位制---弧度制,理解并認(rèn)識到角度制與弧度制都是對角度量的方法,二者是辨證統(tǒng)一的,而不是孤立、割裂的關(guān)系。角的概念推廣以后,在弧度制下,角的集合與實(shí)數(shù)集 之間建立了一一對應(yīng)關(guān)系:即每一個角都有唯一的一個實(shí)數(shù)(即這個角的弧度數(shù))與它對應(yīng);反過來,每一個實(shí)數(shù)也都有唯一的一個角(即弧度數(shù)等于這個實(shí)數(shù)的角)與它對應(yīng),為下一節(jié)學(xué)習(xí)三角函數(shù)做好準(zhǔn)備。

教學(xué)重難點(diǎn)

重點(diǎn): 理解并掌握弧度制定義;熟練地進(jìn)行角度制與弧度制地互化換算;弧度制的運(yùn)用。

難點(diǎn): 理解弧度制定義,弧度制的運(yùn)用。

教學(xué)工具

投影儀等

教學(xué)過程

一、 創(chuàng)設(shè)情境,引入新課

師:有人問:??诘饺齺営卸噙h(yuǎn)時,有人回答約250公里,但也有人回答約160英里,請問那一種回答是正確的?(已知1英里=1.6公里)

顯然,兩種回答都是正確的,但為什么會有不同的數(shù)值呢?那是因?yàn)樗捎玫亩攘恐撇煌?,一個是公里制,一個是英里制。他們的長度單位是不同的,但是,他們之間可以換算:1英里=1.6公里。

在角度的度量里面,也有類似的情況,一個是角度制,我們已經(jīng)不再陌生,另外一個就是我們這節(jié)課要研究的角的另外一種度量制---弧度制。

二、講解新課

1、角度制規(guī)定:將一個圓周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等。

弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制與角度制之間如何換算?請看課本,自行解決上述問題。

2、弧度制的定義

長度等于半徑長的圓弧所對的圓心角叫做1弧度角,記作1,或1弧度,或1(單位可以省略不寫)。

(師生共同活動)探究:如圖,半徑為的圓的圓心與原點(diǎn)重合,角的終邊與軸的正半軸重合,交圓于點(diǎn),終邊與圓交于點(diǎn)。請完成表格。

我們知道,角有正負(fù)零角之分,它的弧度數(shù)也應(yīng)該有正負(fù)零之分,如-π,-2π等等,一般地, 正角的弧度數(shù)是一個正數(shù),負(fù)角的弧度數(shù)是一個負(fù)數(shù),零角的弧度數(shù)是0,角的正負(fù)主要由角的旋轉(zhuǎn)方向來決定。

角的概念推廣以后,在弧度制下,角的集合與實(shí)數(shù)集r之間建立了一一對應(yīng)關(guān)系:即每一個角都有唯一的一個實(shí)數(shù)(即這個角的弧度數(shù))與它對應(yīng);反過來,每一個實(shí)數(shù)也都有唯一的一個角(即弧度數(shù)等于這個實(shí)數(shù)的角)與它對應(yīng)。

四、課堂小結(jié)

度數(shù)與弧度數(shù)的換算也可借助“計算器”《中學(xué)數(shù)學(xué)用表》進(jìn)行;在具體運(yùn)算時,“弧度”二字和單位符號“rad”可以省略 如:3表示3rad sinp表示prad角的正弦應(yīng)確立如下的概念:角的概念推廣之后,無論用角度制還是弧度制都能在角的集合與實(shí)數(shù)的集合之間建立一種一一對應(yīng)的關(guān)系。

五、作業(yè)布置

作業(yè):習(xí)題1.1 a組第7,8,9題。

課后小結(jié)

度數(shù)與弧度數(shù)的換算也可借助“計算器”《中學(xué)數(shù)學(xué)用表》進(jìn)行;在具體運(yùn)算時,“弧度”二字和單位符號“rad”可以省略 如:3表示3rad sinp表示prad角的正弦應(yīng)確立如下的概念:角的概念推廣之后,無論用角度制還是弧度制都能在角的集合與實(shí)數(shù)的集合之間建立一種一一對應(yīng)的關(guān)系。

課后習(xí)題

作業(yè):習(xí)題1.1 a組第7,8,9題。

板書