想要出色的完成自己的教學(xué)任務(wù),寫教案就成了我們的首要任務(wù),我們?cè)谥贫ń贪傅臅r(shí)候,一定要保證它的質(zhì)量,范文社小編今天就為您帶來了高中數(shù)學(xué)必修4教案7篇,相信一定會(huì)對(duì)你有所幫助。
高中數(shù)學(xué)必修4教案篇1
課題名稱
?2.1空間點(diǎn)、直線與平面之間的位置關(guān)系》
科 目
高中數(shù)學(xué)
教學(xué)時(shí)間
1課時(shí)
學(xué)習(xí)者分析
通過第一章《空間幾何體》的學(xué)習(xí),學(xué)生對(duì)于立體幾何已經(jīng)有了初步的認(rèn)識(shí),能夠識(shí)別棱柱、棱錐、棱臺(tái)、圓柱、圓錐、圓臺(tái)、球,并理解它們的幾何特征。但是這種理解還只是建立在觀察、感知的基礎(chǔ)上的,對(duì)于原理學(xué)生是不明確的,所以學(xué)生此時(shí)有很強(qiáng)的求知欲,急于想搞清楚為什么;同時(shí)學(xué)生經(jīng)過高中一年的學(xué)習(xí),已經(jīng)具備了一定的邏輯推理能力,只是缺乏訓(xùn)練,不夠嚴(yán)密,不夠清晰;有一定的自主探究和合作學(xué)習(xí)的能力,但有待提高,并愿意動(dòng)手并參與分組討論。
教學(xué)目標(biāo)
一、知識(shí)與技能
1、理解空間點(diǎn)、直線、平面的概念,知道空間點(diǎn)、直線、平面之間存在什么樣的關(guān)系;
2、記憶三公理三推論,能夠用簡(jiǎn)單的語言概括三公理三推論,會(huì)用圖形表示三公理三推論,并將其轉(zhuǎn)化成數(shù)學(xué)符號(hào)語言;
3、 明確三公理三推論的功能,掌握使用三公理三推論解決立體幾何問題的方法。
二、過程與方法
1、通過自己動(dòng)手制作模型,直觀地感知空間點(diǎn)、直線與平面之間的位置關(guān)系,以及三公理三推論;
2、 通過思考、討論,發(fā)現(xiàn)三公理三推論的條件和結(jié)論;
3、通過例題的訓(xùn)練,進(jìn)一步理解三公理三推論,明確三公理三推論的功能。
三、情感態(tài)度與價(jià)值觀
1、通過操作、觀察、討論培養(yǎng)對(duì)立體幾何的興趣,建立合作的意識(shí);
2、感受立體幾何邏輯體系的嚴(yán)密性,培養(yǎng)學(xué)生細(xì)心的學(xué)習(xí)品質(zhì)。
教學(xué)重點(diǎn)、難點(diǎn)
1、理解三公理三推論的概念及其內(nèi)涵;
2、使用三公理三推論解決立體幾何問題。
教學(xué)資源
(1)每位同學(xué)準(zhǔn)備兩張硬紙板,其中一張中間用小刀劃條縫,鉛筆三根;
(2)教師自制的多媒體課件。
?2.1空間點(diǎn)、直線與平面之間的位置關(guān)系》教學(xué)過程的描述
教學(xué)活動(dòng)1
一、導(dǎo)入新課
1、 回憶構(gòu)成平面圖形的基本元素:點(diǎn)、直線。①兩者都是最原始的概念,點(diǎn)沒有大小、面積、厚度,直線是向兩側(cè)無限延伸的;②點(diǎn)用大寫英文字母表示,直線用小寫英文字母表示;③ 如果將點(diǎn)看作元素,則直線是一系列點(diǎn)構(gòu)成的集合,所以點(diǎn)在直線上記作,點(diǎn)不在直線上記作;
2、 提出問題:構(gòu)成空間幾何體有哪些基本元素?(大屏幕出示棱柱、棱錐、棱臺(tái))學(xué)生很快得到答案:點(diǎn)、直線、平面。
3、 引入課題:什么是平面?點(diǎn)、直線、平面之間有什么樣的位置關(guān)系?平面有什么性質(zhì)?這就是我們這堂課要研究的問題。
教學(xué)活動(dòng)2
二、觀察操作,合作探究
1、 理解平面的概念
平面也是一個(gè)最原始的概念,是向四周無限延伸的,沒有邊界。一般用希臘字母、、,…表示平面,或者記為平面abc,平面abcd等等。
2、 明確空間點(diǎn)、直線、平面之間存在的位置關(guān)系
①點(diǎn)與直線;②點(diǎn)與平面;③直線與平面。
3、 探究平面的性質(zhì)
⑴ 公理??
① 學(xué)生操作,研究如何將鉛筆放置到硬紙板內(nèi)
問題一:鉛筆與硬紙板只有一個(gè)公共點(diǎn)可以么?
問題二:要將鉛筆放置到硬紙板內(nèi)至少需要幾個(gè)公共點(diǎn)?
學(xué)生通過操作,體會(huì)到要將鉛筆放置到硬紙板內(nèi),只需將鉛筆上兩點(diǎn)放置到硬紙板內(nèi)。
② 抽象出公理??
問題一:如何用圖形表示公理一?
問題二:要求學(xué)生將公理一表示成數(shù)學(xué)符號(hào)的形式;
問題三:公理一有什么功能?
③ 動(dòng)畫演示公理??
⑵ 公理二
① 學(xué)生操作,研究過空間中三點(diǎn)能確定幾個(gè)平面
問題一:若三點(diǎn)共線,能確定幾個(gè)平面?
問題二:要確定一個(gè)平面,需要三點(diǎn)滿足什么條件?
學(xué)生通過操作,體會(huì)公理二所表達(dá)的含義。
② 抽象出公理二
問題一:如何用圖形表示公理二?
問題二:要求學(xué)生將公理二表示成數(shù)學(xué)符號(hào)的形式;
問題三:還能根據(jù)什么條件確定一個(gè)平面?引出三推論。
問題四:公理二及三推論有什么功能?
③ 動(dòng)畫演示公理二及三推論
⑶ 公理三
① 學(xué)生操作,展示兩個(gè)平面只有一個(gè)公共點(diǎn)
問題一:兩個(gè)平面真的只有一個(gè)公共點(diǎn)么?
問題二:這個(gè)公共點(diǎn)與這條公共直線有什么關(guān)系?
學(xué)生通過操作,體會(huì)公理三所表達(dá)的含義。
② 抽象出公理三
問題一:如何用圖形表示公理三?
問題二:要求學(xué)生將公理三表示成數(shù)學(xué)符號(hào)的形式;
問題三:公理三有什么功能?
③ 動(dòng)畫演示公理三
教學(xué)活動(dòng)3
三、歸納總結(jié),加深理解
⒈ 平面具有無限延展性;
⒉ 公理一有什么功能?條件是什么?
⒊ 公理二有什么功能?條件是什么?
⒋ 公理三有什么功能?條件是什么?
教學(xué)活動(dòng)4
四、布置作業(yè),課外研討
⒈ 課后練習(xí)p43:1、2、3、4;
⒉ 平面幾何中證明平行四邊形有哪些定理?這些定理在空間中能否成立?說明理由。
高中數(shù)學(xué)必修4教案篇2
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
掌握三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡(jiǎn)單函數(shù)模型.
教學(xué)重難點(diǎn)
.利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型.
教學(xué)過程
一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題
3、一根為lcm的線,一端固定,另一端懸掛一個(gè)小球,組成一個(gè)單擺,小球擺動(dòng)時(shí),離開平衡位置的位移s(單位:cm)與時(shí)間t(單位:s)的函數(shù)關(guān)系是
(1)求小球擺動(dòng)的周期和頻率;(2)已知g=24500px/s2,要使小球擺動(dòng)的周期恰好是1秒,線的長(zhǎng)度l應(yīng)當(dāng)是多少?
(1) 選用一個(gè)函數(shù)來近似描述這個(gè)港口的水深與時(shí)間的函數(shù)關(guān)系,并給出整點(diǎn)時(shí)的水深的近似數(shù)值
(精確到0.001).
(2) 一條貨船的吃水深度(船底與水面的距離)為4米,安全條例規(guī)定至少要有1.5米的安全間隙(船底與洋底的距離) ,該船何時(shí)能進(jìn)入港口?在港口能呆多久?
(3) 若某船的吃水深度為4米,安全間隙為1.5米,該船在2:00開始卸貨,吃水深度以每小時(shí)0.3
米的速度減少,那么該船在什么時(shí)間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的進(jìn)、出港時(shí)間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實(shí)際意義。關(guān)于課本第64頁的 “思考”問題,實(shí)際上,在貨船的安全水深正好與港口水深相等時(shí)停止卸貨將船駛向較深的水域是不行的,因?yàn)檫@樣不能保證船有足夠的時(shí)間發(fā)動(dòng)螺旋槳。
練習(xí):教材p65面3題
三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡(jiǎn)單函數(shù)模型.
2、利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型.
四、作業(yè)《習(xí)案》作業(yè)十四及十五。
高中數(shù)學(xué)必修4教案篇3
1教學(xué)目標(biāo)
1.知道柱體、錐體、臺(tái)體側(cè)面展開圖,弄懂柱體、錐體、臺(tái)體的表面積的求法.
2.能運(yùn)用公式求解柱體、錐體和臺(tái)體的表面積,并知道柱體、錐體和臺(tái)體表面積之間的關(guān)系.
2學(xué)情分析
通過學(xué)習(xí)空間幾何體的結(jié)構(gòu)特征,空間幾何體的三視圖和直觀圖,了解了空間幾何體和平面圖形之間的關(guān)系,從中反映出一個(gè)思想方法,即平面圖形和空間幾何體的互化,尤其是空間幾何問題向平面問題的轉(zhuǎn)化。該部分內(nèi)容中有些是學(xué)生已經(jīng)熟悉的,在解決這些問題的過程中,首先要對(duì)學(xué)生已有的知識(shí)進(jìn)行再認(rèn)識(shí),提煉出解決問題的一般思想——化歸的思想,總結(jié)出一般的求解方法,在此基礎(chǔ)上通過類比獲得解決新問題的思路,通過化歸解決問題,深化對(duì)化歸、類比等思想方法的應(yīng)用。
3重點(diǎn)難點(diǎn)
重點(diǎn):知道柱體、錐體、臺(tái)體側(cè)面展開圖,弄懂柱體、錐體、臺(tái)體的表面積公式。
難點(diǎn):會(huì)求柱體、錐體和臺(tái)體的表面積,并知道柱體、錐體和臺(tái)體表面積之間的關(guān)系.
4教學(xué)過程 4.1 第一學(xué)時(shí) 教學(xué)活動(dòng) 活動(dòng)1【導(dǎo)入】第1課時(shí)柱體、錐體、臺(tái)體的表面積
(一)、基礎(chǔ)自測(cè):
1.棱長(zhǎng)為a的正方體表面積為__________.
2.長(zhǎng)、寬、高分別為a、b、c的長(zhǎng)方體,其表面積為___________________.
3.長(zhǎng)方體、正方體的側(cè)面展開圖為__________.
4.圓柱的側(cè)面展開圖為__________.
5.圓錐的側(cè)面展開圖為__________.
(二).嘗試學(xué)習(xí)
1.柱體的表面積
(1)側(cè)面展開圖:棱柱的側(cè)面展開圖是____________,一邊是棱柱的側(cè)棱,另一邊等于棱柱的__________,如圖①所示;圓柱的側(cè)面展開圖是_______,其中一邊是圓柱的母線,另一邊等于圓柱的底面周長(zhǎng),如圖②所示.
(2)面積:柱體的表面積s表=s側(cè)+2s底.特別地,圓柱的底面半徑為r,母線長(zhǎng)為l,則圓柱的側(cè)面積s側(cè)=__________,表面積s表=__________.
2.錐體的表面積
(1)側(cè)面展開圖:棱錐的側(cè)面展開圖是由若干個(gè)__________拼成的,則側(cè)面積為各個(gè)三角形面積的_____,如圖①所示;圓錐的側(cè)面展開圖是_______,扇形的半徑是圓錐的______,扇形的弧長(zhǎng)等于圓錐的__________,如圖②所示.
(2)面積:錐體的表面積s表=s側(cè)+s底.特別地,圓錐的底面半徑為r,母線長(zhǎng)為l,則圓錐的側(cè)面積s側(cè)=__________,表面積s表=__________.
3.臺(tái)體的表面積
(1)側(cè)面展開圖:棱臺(tái)的側(cè)面展開圖是由若干個(gè)__________拼接而成的,則側(cè)面積為各個(gè)梯形面積的______,如圖①所示;圓臺(tái)的側(cè)面展開圖是扇環(huán),其側(cè)面積可由大扇形的面積減去小扇形的面積而得到,如圖②所示.
(2)面積:臺(tái)體的表面積s表=s側(cè)+s上底+s下底.特別地,圓臺(tái)的上、下底面半徑分別為r′,r,母線長(zhǎng)為l,則側(cè)面積s側(cè)=____________,表面積s表=________________________.
(三).互動(dòng)課堂
例1:在三棱柱abc-a1b1c1中,∠bac=90°,ab=ac=a,∠aa1b1=∠aa1c1=60°,∠bb1c1=90°,側(cè)棱長(zhǎng)為b,則其側(cè)面積為()
a. b.ab c.(+)ab d.ab
例2:(1)若一個(gè)圓錐的軸截面是等邊三角形,其面積為,則這個(gè)圓錐的側(cè)面積是()
a.2π b. c.6π d.9?
(2)已知棱長(zhǎng)均為5,底面為正方形的四棱錐s-abcd,如圖,求它的側(cè)面積、表面積.
例3:一個(gè)四棱臺(tái)的上、下底面都為正方形,且上底面的中心在下底面的投影為下底面中心(正四棱臺(tái))兩底面邊長(zhǎng)分別為1,2,側(cè)面積等于兩個(gè)底面積之和,則這個(gè)棱臺(tái)的高為()
a. b.2 c. d.
(四).鞏固練習(xí):
1.一個(gè)棱柱的側(cè)面展開圖是三個(gè)全等的矩形,矩形的長(zhǎng)和寬分別為6 cm,4 cm,則該棱柱的側(cè)面積為________.
2.已知一個(gè)四棱錐底面為正方形且頂點(diǎn)在底面正方形射影為底面正方形的中心(正四棱錐),底面正方形的邊長(zhǎng)為4 cm,高與斜高的夾角為30°,如圖所示,求正四棱錐的側(cè)面積________和表面積________(單位:cm2).
3.如圖所示,圓臺(tái)的上、下底半徑和高的比為1:4:4,母線長(zhǎng)為10,則圓臺(tái)的側(cè)面積為()
a.81π b.100π c.14π d.169?
(五)、 課堂小結(jié):
求柱體表面積的方法
(1)直棱柱的側(cè)面積等于它的底面周長(zhǎng)和高的乘積;表面積等于它的側(cè)面積與上、下兩個(gè)底面的面積之和.
(2)求斜棱柱的側(cè)面積一般有兩種方法:一是定義法;二是公式法.所謂定義法就是利用側(cè)面積為各側(cè)面面積之和來求,公式法即直接用公式求解.
(3)求圓柱的側(cè)面積只需利用公式即可求解.
(4)求棱錐側(cè)面積的一般方法:定義法.
(5)求圓錐側(cè)面積的一般方法:公式法:s側(cè)=πrl.
(6)求棱臺(tái)側(cè)面積的一般方法:定義法.
(7)求圓臺(tái)側(cè)面積的一般方法:公式法s側(cè)=2(r+r′)l.
五、當(dāng)堂檢測(cè)
1.(2011·北京)某四棱錐的三視圖如圖所示,該四棱錐的表面積是()
a.32 b.16+16
c.48 d.16+32 網(wǎng)]
2.(2013·重慶)某幾何體的三視圖如圖所示,則該幾何體的表面積為()
a.180 b.200 c.220 d.240
3.(2013廣東)若一個(gè)圓臺(tái)的正視圖如圖所示,則其側(cè)面積等于()
a.6 b.6π c.3π d.6?
六、作業(yè):(1)課時(shí)闖關(guān)(今晚交)
七、課后反思:本節(jié)課你會(huì)哪些?還存在哪些問題?
1.3空間幾何體的表面積與體積
課時(shí)設(shè)計(jì) 課堂實(shí)錄
1.3空間幾何體的表面積與體積
1第一學(xué)時(shí) 教學(xué)活動(dòng) 活動(dòng)1【導(dǎo)入】第1課時(shí)柱體、錐體、臺(tái)體的表面積
(一)、基礎(chǔ)自測(cè):
1.棱長(zhǎng)為a的正方體表面積為__________.
2.長(zhǎng)、寬、高分別為a、b、c的長(zhǎng)方體,其表面積為___________________.
3.長(zhǎng)方體、正方體的側(cè)面展開圖為__________.
4.圓柱的側(cè)面展開圖為__________.
5.圓錐的側(cè)面展開圖為__________.
(二).嘗試學(xué)習(xí)
1.柱體的表面積
(1)側(cè)面展開圖:棱柱的側(cè)面展開圖是____________,一邊是棱柱的側(cè)棱,另一邊等于棱柱的__________,如圖①所示;圓柱的側(cè)面展開圖是_______,其中一邊是圓柱的母線,另一邊等于圓柱的底面周長(zhǎng),如圖②所示.
(2)面積:柱體的表面積s表=s側(cè)+2s底.特別地,圓柱的底面半徑為r,母線長(zhǎng)為l,則圓柱的側(cè)面積s側(cè)=__________,表面積s表=__________.
2.錐體的表面積
(1)側(cè)面展開圖:棱錐的側(cè)面展開圖是由若干個(gè)__________拼成的,則側(cè)面積為各個(gè)三角形面積的_____,如圖①所示;圓錐的側(cè)面展開圖是_______,扇形的半徑是圓錐的______,扇形的弧長(zhǎng)等于圓錐的__________,如圖②所示.
(2)面積:錐體的表面積s表=s側(cè)+s底.特別地,圓錐的底面半徑為r,母線長(zhǎng)為l,則圓錐的側(cè)面積s側(cè)=__________,表面積s表=__________.
3.臺(tái)體的表面積
(1)側(cè)面展開圖:棱臺(tái)的側(cè)面展開圖是由若干個(gè)__________拼接而成的,則側(cè)面積為各個(gè)梯形面積的______,如圖①所示;圓臺(tái)的側(cè)面展開圖是扇環(huán),其側(cè)面積可由大扇形的面積減去小扇形的面積而得到,如圖②所示.
(2)面積:臺(tái)體的表面積s表=s側(cè)+s上底+s下底.特別地,圓臺(tái)的上、下底面半徑分別為r′,r,母線長(zhǎng)為l,則側(cè)面積s側(cè)=____________,表面積s表=________________________.
(三).互動(dòng)課堂
例1:在三棱柱abc-a1b1c1中,∠bac=90°,ab=ac=a,∠aa1b1=∠aa1c1=60°,∠bb1c1=90°,側(cè)棱長(zhǎng)為b,則其側(cè)面積為()
a. b.ab c.(+)ab d.ab
例2:(1)若一個(gè)圓錐的軸截面是等邊三角形,其面積為,則這個(gè)圓錐的側(cè)面積是()
a.2π b. c.6π d.9?
(2)已知棱長(zhǎng)均為5,底面為正方形的四棱錐s-abcd,如圖,求它的側(cè)面積、表面積.
例3:一個(gè)四棱臺(tái)的上、下底面都為正方形,且上底面的中心在下底面的投影為下底面中心(正四棱臺(tái))兩底面邊長(zhǎng)分別為1,2,側(cè)面積等于兩個(gè)底面積之和,則這個(gè)棱臺(tái)的高為()
a. b.2 c. d.
(四).鞏固練習(xí):
1.一個(gè)棱柱的側(cè)面展開圖是三個(gè)全等的矩形,矩形的長(zhǎng)和寬分別為6 cm,4 cm,則該棱柱的側(cè)面積為________.
2.已知一個(gè)四棱錐底面為正方形且頂點(diǎn)在底面正方形射影為底面正方形的中心(正四棱錐),底面正方形的邊長(zhǎng)為4 cm,高與斜高的夾角為30°,如圖所示,求正四棱錐的側(cè)面積________和表面積________(單位:cm2).
3.如圖所示,圓臺(tái)的上、下底半徑和高的比為1:4:4,母線長(zhǎng)為10,則圓臺(tái)的側(cè)面積為()
a.81π b.100π c.14π d.169?
(五)、 課堂小結(jié):
求柱體表面積的方法
(1)直棱柱的側(cè)面積等于它的底面周長(zhǎng)和高的乘積;表面積等于它的側(cè)面積與上、下兩個(gè)底面的面積之和.
(2)求斜棱柱的側(cè)面積一般有兩種方法:一是定義法;二是公式法.所謂定義法就是利用側(cè)面積為各側(cè)面面積之和來求,公式法即直接用公式求解.
(3)求圓柱的側(cè)面積只需利用公式即可求解.
(4)求棱錐側(cè)面積的一般方法:定義法.
(5)求圓錐側(cè)面積的一般方法:公式法:s側(cè)=πrl.
(6)求棱臺(tái)側(cè)面積的一般方法:定義法.
(7)求圓臺(tái)側(cè)面積的一般方法:公式法s側(cè)=2(r+r′)l.
五、當(dāng)堂檢測(cè)
1.(2011·北京)某四棱錐的三視圖如圖所示,該四棱錐的表面積是()
a.32 b.16+16
c.48 d.16+32 網(wǎng)]
2.(2013·重慶)某幾何體的三視圖如圖所示,則該幾何體的表面積為()
a.180 b.200 c.220 d.240
3.(2013廣東)若一個(gè)圓臺(tái)的正視圖如圖所示,則其側(cè)面積等于()
a.6 b.6π c.3π d.6?
六、作業(yè):(1)課時(shí)闖關(guān)(今晚交)
七、課后反思:本節(jié)課你會(huì)哪些?還存在哪些問題?
高中數(shù)學(xué)必修4教案篇4
一、教學(xué)目標(biāo)
1.知識(shí)與技能:(1)通過實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。
(3)會(huì)用語言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。
(4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺(tái)的分類。
2.過程與方法:
(1)讓學(xué)生通過直觀感受空間物體,從實(shí)物中概括出柱、錐、臺(tái)、球的幾何結(jié)構(gòu)特征。
(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識(shí)。
3.情感態(tài)度與價(jià)值觀:
(1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。
(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
二、教學(xué)重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。
難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。
三、教學(xué)用具
(1)學(xué)法:觀察、思考、交流、討論、概括。
(2)實(shí)物模型、投影儀。
四、教學(xué)過程
(一)創(chuàng)設(shè)情景,揭示課題
1、由六根火柴最多可搭成幾個(gè)三角形?(空間:4個(gè))
2在我們周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?
3、展示具有柱、錐、臺(tái)、球結(jié)構(gòu)特征的空間物體。
問題:請(qǐng)根據(jù)某種標(biāo)準(zhǔn)對(duì)以上空間物體進(jìn)行分類。
(二)、研探新知
空間幾何體:多面體(面、棱、頂點(diǎn)):棱柱、棱錐、棱臺(tái);
旋轉(zhuǎn)體(軸):圓柱、圓錐、圓臺(tái)、球。
1、棱柱的結(jié)構(gòu)特征:
(1)觀察棱柱的幾何物體以及投影出棱柱的圖片,
思考:它們各自的特點(diǎn)是什么?共同特點(diǎn)是什么?
(學(xué)生討論)
(2)棱柱的主要結(jié)構(gòu)特征(棱柱的概念):
①有兩個(gè)面互相平行;②其余各面都是平行四邊形;③每相鄰兩上四邊形的公共邊互相平行。
(3)棱柱的表示法及分類:
(4)相關(guān)概念:底面(底)、側(cè)面、側(cè)棱、頂點(diǎn)。
2、棱錐、棱臺(tái)的結(jié)構(gòu)特征:
(1)實(shí)物模型演示,投影圖片;
(2)以類似的方法,根據(jù)出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念、分類以及表示。
棱錐:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形。
棱臺(tái):且一個(gè)平行于棱錐底面的平面去截棱錐,底面與截面之間的部分。
3、圓柱的結(jié)構(gòu)特征:
(1)實(shí)物模型演示,投影圖片——如何得到圓柱?
(2)根據(jù)圓柱的概念、相關(guān)概念及圓柱的表示。
4、圓錐、圓臺(tái)、球的結(jié)構(gòu)特征:
(1)實(shí)物模型演示,投影圖片
——如何得到圓錐、圓臺(tái)、球?
(2)以類似的方法,根據(jù)圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示。
5、柱體、錐體、臺(tái)體的概念及關(guān)系:
探究:棱柱、棱錐、棱臺(tái)都是多面體,它們?cè)诮Y(jié)構(gòu)上有哪些相同點(diǎn)和不同點(diǎn)?三者的關(guān)系如何?當(dāng)?shù)酌姘l(fā)生變化時(shí),它們能否互相轉(zhuǎn)化?
圓柱、圓錐、圓臺(tái)呢?
6、簡(jiǎn)單組合體的結(jié)構(gòu)特征:
(1)簡(jiǎn)單組合體的構(gòu)成:由簡(jiǎn)單幾何體拼接或截去或挖去一部分而成。
(2)實(shí)物模型演示,投影圖片——說出組成這些物體的幾何結(jié)構(gòu)特征。
(3)列舉身邊物體,說出它們是由哪些基本幾何體組成的。
(三)排難解惑,發(fā)展思維
1、有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱?(反例說明)
2、棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?
3、圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺(tái)可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?
(四)鞏固深化
練習(xí):課本p7 練習(xí)1、2; 課本p8 習(xí)題1.1 第1、2、3、4、5題
(五)歸納整理:由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容
高中數(shù)學(xué)必修4教案篇5
教學(xué)目標(biāo)
1.數(shù)列求和的綜合應(yīng)用
教學(xué)重難點(diǎn)
2.數(shù)列求和的綜合應(yīng)用
教學(xué)過程
典例分析
3.數(shù)列{an}的前n項(xiàng)和sn=n2-7n-8,
(1)求{an}的通項(xiàng)公式
(2)求{|an|}的前n項(xiàng)和tn
4.等差數(shù)列{an}的公差為,s100=145,則a1+a3 + a5 + …+a99=
5.已知方程(x2-2x+m)(x2-2x+n)=0的四個(gè)根組成一個(gè)首項(xiàng)為的等差數(shù)列,則|m-n|=
6.數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12
(1)求{an}的通項(xiàng)公式
(2)令bn=anxn ,求數(shù)列{bn}前n項(xiàng)和公式
7.四數(shù)中前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,首末兩項(xiàng)之和為21,中間兩項(xiàng)之和為18,求此四個(gè)數(shù)
8.在等差數(shù)列{an}中,a1=20,前n項(xiàng)和為sn,且s10= s15,求當(dāng)n為何值時(shí),sn有最大值,并求出它的最大值
.已知數(shù)列{an},an∈n,sn= (an+2)2
(1)求證{an}是等差數(shù)列
(2)若bn= an-30 ,求數(shù)列{bn}前n項(xiàng)的最小值
0.已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈n)
(1)設(shè)f(x)的圖象的頂點(diǎn)的橫坐標(biāo)構(gòu)成數(shù)列{an},求證數(shù)列{an}是等差數(shù)列
(2設(shè)f(x)的圖象的頂點(diǎn)到x軸的距離構(gòu)成數(shù)列{dn},求數(shù)列{dn}的前n項(xiàng)和sn.
11 .購買一件售價(jià)為5000元的商品,采用分期付款的辦法,每期付款數(shù)相同,購買后1個(gè)月第1次付款,再過1個(gè)月第2次付款,如此下去,共付款5次后還清,如果按月利率0.8%,每月利息按復(fù)利計(jì)算(上月利息要計(jì)入下月本金),那么每期應(yīng)付款多少?(精確到1元)
12 .某商品在最近100天內(nèi)的價(jià)格f(t)與時(shí)間t的
函數(shù)關(guān)系式是f(t)=
銷售量g(t)與時(shí)間t的函數(shù)關(guān)系是
g(t)= -t/3 +109/3 (0≤t≤100)
求這種商品的日銷售額的最大值
注:對(duì)于分段函數(shù)型的應(yīng)用題,應(yīng)注意對(duì)變量x的取值區(qū)間的討論;求函數(shù)的最大值,應(yīng)分別求出函數(shù)在各段中的最大值,通過比較,確定最大值
1、棱柱
棱柱的定義:有兩個(gè)面互相平行,其余各面都是四邊形,并且每?jī)蓚€(gè)四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。
棱柱的性質(zhì)
(1)側(cè)棱都相等,側(cè)面是平行四邊形
(2)兩個(gè)底面與平行于底面的截面是全等的多邊形
(3)過不相鄰的兩條側(cè)棱的截面(對(duì)角面)是平行四邊形
2、棱錐
棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐
棱錐的性質(zhì):
(1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形
(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方
3、正棱錐
正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
(1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(2)多個(gè)特殊的直角三角形
a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。
b、四面體中有三對(duì)異面直線,若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。
一)、課內(nèi)重視聽講,課后及時(shí)復(fù)習(xí)。
新知識(shí)的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進(jìn)行,所以要特點(diǎn)重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時(shí)要緊跟老師的思路,積極展開思維預(yù)測(cè)下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識(shí)和基本技能的學(xué)習(xí),課后要及時(shí)復(fù)習(xí)不留疑點(diǎn)。首先要在做各種習(xí)題之前將老師所講的知識(shí)點(diǎn)回憶一遍,正確掌握各類公式的推理過程,應(yīng)盡量回憶而不采用不清楚立即翻書之舉。認(rèn)真獨(dú)立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問的學(xué)習(xí)作風(fēng),對(duì)于有些題目由于自己的思路不清,一時(shí)難以解出,應(yīng)讓自己冷靜下來認(rèn)真分析題目,盡量自己解決。在每個(gè)階段的學(xué)習(xí)中要進(jìn)行整理和歸納總結(jié),把知識(shí)的點(diǎn)、線、面結(jié)合起來交織成知識(shí)網(wǎng)絡(luò),納入自己的知識(shí)體系。
二)、適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣。
要想學(xué)好數(shù)學(xué),多做題是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對(duì)于一些易錯(cuò)題,可備有錯(cuò)題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯(cuò)誤所在,以便及時(shí)更正。在平時(shí)要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運(yùn)用自如。實(shí)踐證明:越到關(guān)鍵時(shí)候,你所表現(xiàn)的解題習(xí)慣與平時(shí)練習(xí)無異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養(yǎng)成良好的解題習(xí)慣是非常重要的。
三)、調(diào)整心態(tài),正確對(duì)待考試。
首先,應(yīng)把主要精力放在基礎(chǔ)知識(shí)、基本技能、基本方法這三個(gè)方面上,因?yàn)槊看慰荚囌冀^大部分的也是基礎(chǔ)性的題目,而對(duì)于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時(shí)候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對(duì)自己要有信心,永遠(yuǎn)鼓勵(lì)自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對(duì)于一些容易的基礎(chǔ)題要有十二分把握拿全分;對(duì)于一些難題,也要盡量拿分,考試中要學(xué)會(huì)嘗試得分,使自己的水平正常甚至超常發(fā)揮。
高中數(shù)學(xué)必修4教案篇6
一、教材分析
教材的地位和作用
期望是概率論和數(shù)理統(tǒng)計(jì)的重要概念之一,是反映隨機(jī)變量取值分布的特征數(shù),學(xué)習(xí)期望將為今后學(xué)習(xí)概率統(tǒng)計(jì)知識(shí)做鋪墊。同時(shí),它在市場(chǎng)預(yù)測(cè),經(jīng)濟(jì)統(tǒng)計(jì),風(fēng)險(xiǎn)與決策等領(lǐng)域有著廣泛的應(yīng)用,為今后學(xué)習(xí)數(shù)學(xué)及相關(guān)學(xué)科產(chǎn)生深遠(yuǎn)的影響。
教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):離散型隨機(jī)變量期望的概念及其實(shí)際含義。
難點(diǎn):離散型隨機(jī)變量期望的實(shí)際應(yīng)用。
[理論依據(jù)]本課是一節(jié)概念新授課,而概念本身具有一定的抽象性,學(xué)生難以理解,因此把對(duì)離散性隨機(jī)變量期望的概念的教學(xué)作為本節(jié)課的教學(xué)重點(diǎn)。此外,學(xué)生初次應(yīng)用概念解決實(shí)際問題也較為困難,故把其作為本節(jié)課的教學(xué)難點(diǎn)。
二、教學(xué)目標(biāo)
[知識(shí)與技能目標(biāo)]
通過實(shí)例,讓學(xué)生理解離散型隨機(jī)變量期望的概念,了解其實(shí)際含義。
會(huì)計(jì)算簡(jiǎn)單的離散型隨機(jī)變量的期望,并解決一些實(shí)際問題。
[過程與方法目標(biāo)]
經(jīng)歷概念的建構(gòu)這一過程,讓學(xué)生進(jìn)一步體會(huì)從特殊到一般的思想,培養(yǎng)學(xué)生歸納、概括等合情推理能力。
通過實(shí)際應(yīng)用,培養(yǎng)學(xué)生把實(shí)際問題抽象成數(shù)學(xué)問題的能力和學(xué)以致用的數(shù)學(xué)應(yīng)用意識(shí)。
[情感與態(tài)度目標(biāo)]
通過創(chuàng)設(shè)情境激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的情感,培養(yǎng)其嚴(yán)謹(jǐn)治學(xué)的態(tài)度。在學(xué)生分析問題、解決問題的過程中培養(yǎng)其積極探索的精神,從而實(shí)現(xiàn)自我的價(jià)值。
三、教法選擇
引導(dǎo)發(fā)現(xiàn)法
四、學(xué)法指導(dǎo)
“授之以魚,不如授之以漁”,注重發(fā)揮學(xué)生的主體性,讓學(xué)生在學(xué)習(xí)中學(xué)會(huì)怎樣發(fā)現(xiàn)問題、分析問題、解決問題。
高中數(shù)學(xué)必修4教案篇7
一、向量的概念
1、既有又有的量叫做向量。用有向線段表示向量時(shí),有向線段的長(zhǎng)度表示向量的,有向線段的箭頭所指的方向表示向量的
2、叫做單位向量
3、的向量叫做平行向量,因?yàn)槿我唤M平行向量都可以平移到同一條直線上,所以平行向量也叫做。零向量與任一向量平行
4、且的向量叫做相等向量
5、叫做相反向量
二、向量的表示方法:幾何表示法、字母表示法、坐標(biāo)表示法
三、向量的加減法及其坐標(biāo)運(yùn)算
四、實(shí)數(shù)與向量的乘積
定義:實(shí)數(shù) λ 與向量 的積是一個(gè)向量,記作λ
五、平面向量基本定理
如果e1、e2是同一個(gè)平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2,使a=λ1e1+λ2e2 ,其中e1,e2叫基底
六、向量共線/平行的充要條件
七、非零向量垂直的充要條件
八、線段的定比分點(diǎn)
設(shè)是上的 兩點(diǎn),p是上_________的任意一點(diǎn),則存在實(shí)數(shù),使_______________,則為點(diǎn)p分有向線段所成的比,同時(shí),稱p為有向線段的定比分點(diǎn)
定比分點(diǎn)坐標(biāo)公式及向量式
九、平面向量的數(shù)量積
(1)設(shè)兩個(gè)非零向量a和b,作oa=a,ob=b,則∠aob=θ叫a與b的夾角,其范圍是[0,π],|b|cosθ叫b在a上的投影
(2)|a||b|cosθ叫a與b的數(shù)量積,記作a·b,即 a·b=|a||b|cosθ
(3)平面向量的數(shù)量積的坐標(biāo)表示
十、平移
典例解讀
1、給出下列命題:①若|a|=|b|,則a=b;②若a,b,c,d是不共線的四點(diǎn),則ab= dc是四邊形abcd為平行四邊形的充要條件;③若a=b,b=c,則a=c;④a=b的充要條件是|a|=|b|且a∥b;⑤若a∥b,b∥c,則a∥c
其中,正確命題的序號(hào)是______
2、已知a,b方向相同,且|a|=3,|b|=7,則|2a-b|=____
3、若將向量a=(2,1)繞原點(diǎn)按逆時(shí)針方向旋轉(zhuǎn) 得到向量b,則向量b的坐標(biāo)為_____
4、下列算式中不正確的是( )
(a) ab+bc+ca=0 (b) ab-ac=bc
(c) 0·ab=0 (d)λ(μa)=(λμ)a
5、若向量a=(1,1),b=(1,-1),c=(-1,2),則c=( )
?函數(shù)y=x2的圖象按向量a=(2,1)平移后得到的圖象的函數(shù)表達(dá)式為( )
(a)y=(x-2)2-1 (b)y=(x+2)2-1 (c)y=(x-2)2+1 (d)y=(x+2)2+1
7、平面直角坐標(biāo)系中,o為坐標(biāo)原點(diǎn),已知兩點(diǎn)a(3,1),b(-1,3),若點(diǎn)c滿足oc=αoa+βob,其中a、β∈r,且α+β=1,則點(diǎn)c的軌跡方程為( )
(a)3x+2y-11=0 (b)(x-1)2+(y-2)2=5
(c)2x-y=0 (d)x+2y-5=0
8、設(shè)p、q是四邊形abcd對(duì)角線ac、bd中點(diǎn),bc=a,da=b,則 pq=_________
9、已知a(5,-1) b(-1,7) c(1,2),求△abc中∠a平分線長(zhǎng)
10、若向量a、b的坐標(biāo)滿足a+b=(-2,-1),a-b=(4,-3),則a·b等于( )
(a)-5 (b)5 (c)7 (d)-1
11、若a、b、c是非零的平面向量,其中任意兩個(gè)向量都不共線,則( )
(a)(a)2·(b)2=(a·b)2 (b)|a+b|>|a-b|
(c)(a·b)·c-(b·c)·a與b垂直 (d)(a·b)·c-(b·c)·a=0
12、設(shè)a=(1,0),b=(1,1),且(a+λb)⊥b,則實(shí)數(shù)λ的值是( )
(a)2 (b)0 (c)1 (d)2
16、利用向量證明:△abc中,m為bc的中點(diǎn),則 ab2+ac2=2(am2+mb2)
17、在三角形abc中, =(2,3), =(1,k),且三角形abc的一個(gè)內(nèi)角為直角,求實(shí)數(shù)k的值
18、已知△abc中,a(2,-1),b(3,2),c(-3,-1),bc邊上的高為ad,求點(diǎn)d和向量