優(yōu)秀的教案對于我們的教學(xué)進(jìn)度和課堂效率是有很大的影響的,為做好教學(xué)前的統(tǒng)籌工作,老師們需要制定一份完美的教案,以下是范文社小編精心為您推薦的1-5的加法教案7篇,供大家參考。
1-5的加法教案篇1
一、活動目標(biāo):
1、 認(rèn)識 “+” “=”,初步理解加法的含義。
2、學(xué)習(xí)5以內(nèi)數(shù)的合成型加法。
二、活動準(zhǔn)備:
動物圖卡若干、紙和筆
三、活動流程:
(一) 教師隨意拿幾塊積木問:剛才我用了幾塊積木搭這座小房子?
(二)對計數(shù)記過進(jìn)行數(shù)的合成練習(xí)。
——把積木分給兩個小動物,問:小狗和小貓各有幾塊積木?合起來又是多少塊?并擺上正確的數(shù)字。
——結(jié)合數(shù)字卡進(jìn)行念唱,1和4合起來時5,2和3合起來是5…..。
(三)游戲考考你:
講述故事情節(jié),幫助幼兒理解“+”、“=”的意義。
1、教師:冬天快到了,小燕子美美一家要從北方飛到南方去過冬。美美的爸爸媽媽在前面飛(出示2只燕子),美美跟在后面(再出示1只燕子),一共有幾只燕子要到南方去呀?
將相應(yīng)的數(shù)字卡貼在教具下面,引導(dǎo)幼兒說出爸爸媽媽2只,美美1只,合起來時3只。告訴幼兒“合起來”就是“加在一起”的意思,然后將“+”卡放在2和1的中間。再將“=”卡放在1的后面,并告訴幼兒“=”就是相等的意思,等號前面的是一個算式,等號后面的數(shù)字就是前面算式的計算結(jié)果。
3)通過游戲“小白兔采蘑菇”,進(jìn)行正確的對應(yīng)計數(shù),完成加法的計算。教師邊操作貼絨小兔邊說:小白兔先采了3個蘑菇,小灰兔又幫它采了2個蘑菇,現(xiàn)在小白兔一共有幾個蘑菇呢?
活動反思:在這個活動中孩子每一個步驟孩子都能跟著一起操作,環(huán)節(jié)與環(huán)節(jié)之間的連接比較緊湊,對活動內(nèi)容基本掌握,都能教熟練地說出5以內(nèi)的加減法。但整個活動流程不夠靈活,都是老師說,孩子答,給孩子探索思考的空間較少。而且在孩子對5的加法比較熟練的情況下,我還是按原來的活動流程完成教學(xué)任務(wù)。不能及時作出調(diào)整,如我們可以進(jìn)一步加深難度,編應(yīng)用題。這也反映了一個問題,就是老師對孩子的最近發(fā)展區(qū)不了解,要不就是涉及的內(nèi)容太難,要不就是涉及的內(nèi)容太簡單。怎樣了解孩子的“最近發(fā)展區(qū)”值得我們好好學(xué)習(xí),思考,讓孩子在每個活動中有所收獲而不會覺得太難或太簡單,而不是為了完成任務(wù)而教。
1-5的加法教案篇2
活動設(shè)計背景
為了激發(fā) 和發(fā)展幼兒對數(shù)學(xué)的興趣和愛好;提高幼兒的想象力,觀察力。
活動目標(biāo)
1.根據(jù)同一事物的不同特征分解畫面,感知分合式,算式所表達(dá)的數(shù)量關(guān)系學(xué)習(xí)6的加法。
2.引導(dǎo)幼兒學(xué)習(xí)用語言講述算數(shù)所表達(dá)的用以。
3.培養(yǎng)幼兒比較和判斷的能力。
4.讓幼兒體驗(yàn)數(shù)學(xué)活動的樂趣。
5.了解數(shù)字在日常生活中的應(yīng)用,初步理解數(shù)字與人們生活的關(guān)系。
教學(xué)重點(diǎn)、難點(diǎn)
1、學(xué)習(xí)6的5種加法;
2、學(xué)習(xí)感知分合式;
活動準(zhǔn)備
教具:實(shí)物圖(一顆大樹,6個蘋果,1個大,5個小;2個紅色,4個黃色;3個有葉子的,3個沒葉子的)。
裝有6的5組加法算式禮物盒一個。
活動過程
一,復(fù)習(xí)6的組成。
老師:“我們來碰球,你的球和我的球和起來要是6”。運(yùn)用拍手游戲和碰球游戲。(在黑板上的一邊寫好6的分合式)。
二,學(xué)習(xí)6的加法。
1.引導(dǎo)幼兒仔細(xì)看圖,分解畫面。
2.集中交流。
3.帶領(lǐng)幼兒讀6的`5種加法算式。
老師:“我們把6的5種加法算式用好聽的聲音來讀一讀吧”。
三,“小動物們送禮物”的游戲。
1.老師:“我這里有一個禮物盒,這禮物盒里有著很多漂亮的禮物,但是你們要先讀出老師出示的算式并回答問題才能得到很漂亮的禮物。(交代游戲要求)。
2.老師口報應(yīng)用題,幼兒口列算式。
3.評價幼兒游戲結(jié)果。
4.收拾學(xué)具結(jié)束本次活動。
教學(xué)反思
我覺得,這個活動讓孩子們學(xué)會了很多,在快樂的心情中講述,幼兒也很快樂的學(xué)習(xí),而且6的加法算式他們?nèi)紝W(xué)會了。最重要的是快樂,孩子們快樂,作為老師的我也很快樂。
1-5的加法教案篇3
教學(xué)目標(biāo)
1、知識與技能:用運(yùn)算定律進(jìn)行一些簡便運(yùn)算。
2、過程與方法:培養(yǎng)學(xué)生根據(jù)具體情況,選擇算法的意識與能力,發(fā)展思維的靈活性。
3、情感態(tài)度與價值觀:使學(xué)生感受數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,能用所學(xué)知識解決簡單的實(shí)際問題。
教學(xué)重、難點(diǎn):能運(yùn)用運(yùn)算定律進(jìn)行一些簡便運(yùn)算。
教學(xué)環(huán)節(jié)
問題情境與教師活動學(xué)生活動媒體應(yīng)用設(shè)計意圖
目標(biāo)達(dá)成
導(dǎo)入新課
一、目標(biāo)導(dǎo)學(xué)
1、上節(jié)課我們學(xué)習(xí)了加法的兩個運(yùn)算定律,你能說出是哪兩個嗎?你能舉出例子說說嗎?
2、導(dǎo)入新課(師板書課題)
3、出示學(xué)習(xí)目標(biāo)。
二、自主學(xué)習(xí)(根據(jù)自學(xué)提綱自學(xué)課本20頁例3。)
(一)自學(xué)提綱
1、例3中都給出了哪些已知條件?求的問題是什么?
2、你能列出算式嗎?
3、你能很快算出此題的答案嗎?你是怎樣計算的?與同桌交流。
4、在此題中,你運(yùn)用了加法的哪些運(yùn)算定律?
(二)學(xué)生自學(xué)(教師巡回指導(dǎo),并告訴學(xué)生在看不懂的地方要做上標(biāo)記)。
(三)自學(xué)檢測
計算下面各題,怎樣簡便就怎樣計算
425+14+18675+168+25
環(huán)節(jié)
三、合作探究
1、小組互探(把在自學(xué)過程中遇到的不會問題在小組內(nèi)交流探究)。
2、師生互探(師生共同探究在自學(xué)過程中遇到的不會問題及經(jīng)小組討論后還未能解決的問題)
3、在運(yùn)用加法運(yùn)算定律進(jìn)行計算時應(yīng)注意什么?
四、達(dá)標(biāo)訓(xùn)練
1、根據(jù)運(yùn)算定律在下面的()里填上適當(dāng)?shù)臄?shù)。
46+()=75+()()+38=()+5924+19=()+()
a+57=()+()要求學(xué)生說出根據(jù)什么運(yùn)算定律填數(shù)。
2下面各式那些符合加法交換律。
140+250=260+13020+70+30=70+30+20260+450=460+250a+400=400+a
3、p20做一做1、2
五、全課總結(jié)
1-5的加法教案篇4
教學(xué)目標(biāo):
1、使學(xué)生掌握有理數(shù)加法的運(yùn)算律,并能運(yùn)用加法運(yùn)算律簡化運(yùn)算。
2、培養(yǎng)學(xué)生觀察、比較、歸納及運(yùn)算能力。
重點(diǎn):有理數(shù)加法運(yùn)算律及其運(yùn)用。
重點(diǎn):靈活運(yùn)用運(yùn)算律
教學(xué)過程:
一、創(chuàng)設(shè)情境,引入新課
1、小學(xué)時已學(xué)過的加法運(yùn)算律有哪幾條?
2、猜一猜:在有理數(shù)的加法中,這兩條運(yùn)算律仍然適用嗎?
3、(1)計算30+(-20)=__________=______,-20+30=___________=_____;
(2)[8+(-5)]+(-4)=_______=______, 8+[(-5)+(-4)]=_______=______。
二、講授新課
教師:你會用文字表述加法的兩條運(yùn)算律嗎?你會用字母表示加法的這兩條運(yùn)算律嗎?
(學(xué)生回答省略)
師生共同歸納:加法交換律:兩個數(shù)相加,交換加數(shù)的位置,和不變。 即:a+b=b+a
加法結(jié)合律:三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。即(a+b)+c=a+(b+c)
講解例3
教師:例3中是怎樣使計算簡化的?這樣做的根據(jù)是什么?(請兩位同學(xué)起來回答)
三、鞏固知識
教師:例4中用了兩種方法,比較兩種解法,哪種方法比較好?解法2中使用了哪些運(yùn)算律?
師生共同得出:解法2比較好,因?yàn)樗倪\(yùn)算量比較小。解法2中使用了加法交換律和加法結(jié)合律。
四、總結(jié)
本節(jié)課主要學(xué)習(xí)有理數(shù)加法運(yùn)算律及其運(yùn)用,主要用到的思想方法是類比思想,需要注意的是:有理數(shù)的加法運(yùn)算律與小學(xué)學(xué)習(xí)的運(yùn)算律相同,運(yùn)用加法運(yùn)算律的目的為了簡化運(yùn)算。解題技巧是將正數(shù)分別相加,再把負(fù)數(shù)分別相加,然后再把它們的和相加。
五、布置作業(yè)
1-5的加法教案篇5
教學(xué)目標(biāo)
1. 會把有理數(shù)的加減法混合運(yùn)算統(tǒng)一為加法運(yùn)算;
2. 會把省略加號和括號的有理數(shù)加減混合運(yùn)算看成幾個有理數(shù)的加法運(yùn)算;
3.進(jìn)一步感悟“轉(zhuǎn)化”的思想.
教學(xué)重點(diǎn)
把有理數(shù)的加減法混合運(yùn)算統(tǒng)一為加法運(yùn)算.
教學(xué)難點(diǎn)
省略負(fù)數(shù)前面的加號的.有理數(shù)加法,運(yùn)用運(yùn)算律交換加數(shù)位置時,符號不變.
教學(xué)過程
根據(jù)有理數(shù)的減法法則,有理數(shù)的加減速混合運(yùn)算可以統(tǒng)一為加法運(yùn)算.
1.完成下列計算:
(1) 3+7-12; (2)(-8)-(-10)+(-6)-(+4).
歸納: 根據(jù)有理數(shù)的減法法則,有理數(shù)的加減混合運(yùn)算可以統(tǒng)一為 運(yùn)算;
(2)式統(tǒng)一成加法是________________________________;
省略負(fù)數(shù)前面的加號和( )后的形式是______________________;
讀作____________________ 或 _______________________.
展示交流
1.把下列運(yùn)算統(tǒng)一成加法運(yùn)算:
(1)(-12)+(-5)-(-8)-(+9)=_____________________________;
(2)(-9)-(+5)-(-15)-(+9)=_____________________________;
(3) 2+5-8=_________________________________;
(4) 14-(-12)+(-25)-17=_____________________________________.
2. 將下列有理數(shù)加法運(yùn)算中,加號省略:
(1)12+(-8)=________________;
(2)(-12)+(-8)=_________________________________;
(3)(-9)+(-5)+(+15)+(-20)= ____________________________.
3.將下列運(yùn)算先統(tǒng)一成加法,再省略加號:
(-15)-(+63)-(-35)-(+24)+(-12)=_________________________
=_________________________.
4. 仿照本p37例6,完成下列計算:
(1) -4-5+6 ; (2) -23+41-24+12-46.
5. 仿照本p38例7,巡道員沿東西方向的鐵路巡視維護(hù),從住地出發(fā),他先向東巡視了6km,休息之后,繼續(xù)向東維護(hù)了4km;然后折返向西巡視了12.5 km,此時他在住地的什么方向?與駐地的距離是多少?
盤點(diǎn)收獲
個案補(bǔ)充
課堂反饋
1.計算:
2.早晨6:00的氣溫為 ℃,到中午2:00氣溫上升了8℃,到晚上10:00氣溫又下降了9℃.晚上10:00的氣溫是多少?
遷移創(chuàng)新
一架飛機(jī)做特技表演,它起飛后的高度變化情況為:上升4.5千米,下降3.2千米,上升1.1千米,下降1.4千米,求此時飛機(jī)比起飛點(diǎn)高了多少千米?
課堂作業(yè)
本p39 習(xí)題2 .5第6題(1)、 (3)、(5), 第7題 .
1-5的加法教案篇6
【目標(biāo)預(yù)覽】
知識技能:1、通過實(shí)例,了解有理數(shù)加法的意義,掌握有理數(shù)加法法則,并能運(yùn)用法則進(jìn)行計算;
2、在有理數(shù)加法法則的教學(xué)過程中,培養(yǎng)觀察、比較、歸納及運(yùn)算能力。 數(shù)學(xué)思考:1、正確地進(jìn)行有理數(shù)的加法運(yùn)算;
2、用數(shù)形結(jié)合的思想方法得出有理數(shù)加法法則。
解決問題:能運(yùn)用有理數(shù)加法解決實(shí)際問題。
情感態(tài)度:通過師生活動、學(xué)生自我探究,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來。
【教學(xué)重點(diǎn)和難點(diǎn)】
重點(diǎn):了解有理數(shù)加法的意義,會根據(jù)有理數(shù)加法法則進(jìn)行有理數(shù)加法計算; 難點(diǎn):異號兩數(shù)如何相加的法則。
【情景設(shè)計】
我們來看一個大家熟悉的實(shí)際問題:
足球比賽中進(jìn)球個數(shù)與失球個數(shù)是相反意義的量.若我們規(guī)定進(jìn)球?yàn)椤罢?,失球?yàn)椤柏?fù)”。比如,進(jìn)3個球記為正數(shù):+3,失2個球記為負(fù)數(shù):-2。它們的和為凈勝球數(shù):(+3)+(-2)學(xué)校足球隊(duì)在一場比賽中的勝負(fù)情況如下:
(1)紅隊(duì)進(jìn)了3個球,失了2個球,那么凈勝球數(shù)是:(+3)+(-2)
(2)藍(lán)隊(duì)進(jìn)了1個球,失了1個球,那么凈勝球數(shù)是:(+1)+(-1)
這里,就需要用到正數(shù)與負(fù)數(shù)的加法。
下面,我們利用數(shù)軸一起來討論有理數(shù)的加法規(guī)律。
?探求新知】
一個物體作左右運(yùn)動,我們規(guī)定向左為負(fù),向右為正。向右運(yùn)動5m,可以記作多少?向左運(yùn)動5m呢?
(1)如果物體先向右運(yùn)動5m,再向右運(yùn)動3m,那么兩次運(yùn)動后總的結(jié)果是多少呢? 利用數(shù)軸演示(如圖1),把原點(diǎn)假設(shè)為運(yùn)動起點(diǎn)。
兩次運(yùn)動后物體從起點(diǎn)向右運(yùn)動了8m。寫成算式是:5+3=8①
利用數(shù)軸依次討論如下問題,引導(dǎo)學(xué)生自己尋找算式的答案:
(2)如果物體先向左運(yùn)動5m,再向左運(yùn)動3m,那么兩次運(yùn)動后總的結(jié)果是多少呢?
(3)如果物體先向右運(yùn)動5m,再向左運(yùn)動3m,那么兩次運(yùn)動后總的結(jié)果是多少呢?
(4)如果物體先向左運(yùn)動5m,再向右運(yùn)動3m,那么兩次運(yùn)動后總的結(jié)果是多少呢?
(5)如果物體先向左運(yùn)動5m,再向右運(yùn)動5m,那么兩次運(yùn)動后總的結(jié)果是多少呢?
(6)如果物體先向右運(yùn)動5m,再向左運(yùn)動5m,那么兩次運(yùn)動后總的結(jié)果是多少呢?
(7)如果物體第一分鐘向右(或向左)運(yùn)動5m,第二分鐘原地不動,那么兩次運(yùn)動后總的結(jié)果是多少呢?
總結(jié):依次可得
(2)(-5)+(-3)=-8②
(3)5+(-3)=2③
(4)3+(-5)=-2④
(5)5+(-5)=0⑤
(6)(-5)+5=0⑥
(7)5+0=5或(-5)+0=-5⑦
觀察上述7個算式,自己歸納出有理數(shù)加法法則:
1.同號兩數(shù)相加,取相同的符號,并把絕對值相加;
2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0;
3.一個數(shù)同0相加,仍得這個數(shù)。
【范例精析】
例1計算下列算式的結(jié)果,并說明理由:
(1)(+4)+(+7);(2)(-4)+(-7);
(3)(+4)+(-7);(4)(+9)+(-4);
(5)(+4)+(-4);(6)(+9)+(-2);
(7)(-9)+(+2);(8)(-9)+0;
(9)0+(+2);(10)0+0.
學(xué)生逐題口答后,教師小結(jié):
進(jìn)行有理數(shù)加法,先要判斷兩個加數(shù)是同號還是異號,有一個加數(shù)是否為零;再根據(jù)兩個加數(shù)符號的具體情況,選用某一條加法法則.進(jìn)行計算時,通常應(yīng)該先確定“和”的符號,再計算“和”的絕對值.
解:(1)(-3)+(-9) (兩個加數(shù)同號,用加法法則的第2條計算)
=-(3+9)(和取負(fù)號,把絕對值相加)
=-12.
例3 足球循環(huán)比賽中,紅隊(duì)勝黃隊(duì)4﹕1,黃隊(duì)勝藍(lán)隊(duì)1﹕0,藍(lán)隊(duì)勝紅隊(duì)1﹕0,計算各隊(duì)的凈勝球數(shù)。
解:我們規(guī)定進(jìn)球?yàn)椤罢?,失球?yàn)椤柏?fù)”。它們的和為凈勝球數(shù)。
三場比賽中,紅隊(duì)共進(jìn)4球,失2球,凈勝球數(shù)為(+4)+(-2)=2;
黃隊(duì)共進(jìn)2球,失4球,凈勝球數(shù)為(+2)+(-4)= -2;
藍(lán)隊(duì)共進(jìn)1球,失1球,凈勝球數(shù)為(+1)+(-1)=0;
【一試身手】
下面請同學(xué)們計算下列各題:
(1)(-0.9)+(+1.5);(2)(+2.7)+(-3); (3)(-1.1)+(-2.9);
全班學(xué)生書面練,四位學(xué)生板演,教師對學(xué)生板演進(jìn)行講評.
【總結(jié)陳詞】
1、這節(jié)課我們從實(shí)例出發(fā),經(jīng)過比較、歸納,得出了有理數(shù)加法的法則.今后我們經(jīng)常要用類似的思想方法研究其他問題。
2、應(yīng)用有理數(shù)加法法則進(jìn)行計算時,要同時注意確定“和”的符號,計算“和”的絕對值兩件事。
【實(shí)戰(zhàn)操練】
1.計算:
(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);
(4)(+6)+(+9);(5)67+(-73);(6)(-84)+(-59);
(7)33+48;(8)(-56)+37.
2.計算:
(1)(-0.9)+(-2.7);(2)3.8+(-8.4);
(3)(-0.5)+3;(4)3.29+1.78;
(5)7+(-3.04);(6)(-2.9)+(-0.31);
(7)(-9.18)+6.18;(8)4.23+(-6.77);(9)(-0.78)+0.
3.計算:
4*.用“>”或“<”號填空:
(1)如果a>0,b>0,那么a+b ______0;
(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;
(4)如果a<0,b>0,|a|>|b|,那么a+b ______0.
5*.分別根據(jù)下列條件,利用|a|與|b|表示a與b的和:
(1)a>0,b>0;(2) a<0,b<0;
(3)a>0,b<0,|a|>|b|;(4)a>0,b<0,|a|<|b|.
1-5的加法教案篇7
學(xué)習(xí)目標(biāo)
1. 理解有理數(shù)的加法法則.
2. 能夠應(yīng)用有理數(shù)的加法法則,將有理數(shù)的加法轉(zhuǎn)化為非負(fù)數(shù)的加減運(yùn)算.
3. 掌握異號兩數(shù)的加法運(yùn)算的規(guī)律.
[知識講解]
正有理數(shù)及0的加法運(yùn)算,小學(xué)已經(jīng)學(xué)過,然而實(shí)際問題中做加法運(yùn)算的數(shù)有可能超出正數(shù)范圍。例如,足球循環(huán)賽中,可以把進(jìn)球數(shù)記為正數(shù),失球數(shù)記為負(fù)數(shù),它們的和叫做凈勝球數(shù)。如果,紅隊(duì)進(jìn)4個球,失2個球;藍(lán)隊(duì)進(jìn)1個球,失1個球.于是紅隊(duì)的凈勝球數(shù)為
4+(-2),
藍(lán)隊(duì)的凈勝球數(shù)為
1+(-1)。
這里用到正數(shù)和負(fù)數(shù)的加法。
下面借助數(shù)軸來討論有理數(shù)的加法。
一、負(fù)數(shù)+負(fù)數(shù)
如果規(guī)定向東為正,向西為負(fù),那么一個人向西走2米,再向西走3米,兩次共向西走多少米?很明顯,兩次共向西走了6米.
這個問題用算式表示就是:(-2)+(-4)=-6.
這個問題用數(shù)軸表示就是如圖1所示:
二、負(fù)數(shù)+正數(shù)
如果向西走2米,再向東走4米, 那么兩次運(yùn)動后 這個人從起點(diǎn)向東走2米,寫成算式就是
(—2)+4=2。
這個問題用數(shù)軸表示就是如圖2所示:
探究
利用數(shù)軸,求以下情況時這個人兩次運(yùn)動的結(jié)果:
(一)先向東走3米,再向西走5米,物體從起點(diǎn)向()運(yùn)動了()米;
(二)先向東走5米,再向西走5米,物體從起點(diǎn)向()運(yùn)動了()米;
(三)先向西走5米,再向東走5米,物體從起點(diǎn)向()運(yùn)動了()米。 這三種情況運(yùn)動結(jié)果的算式如下:
3+(—5)= —2;
5+(—5)= 0;
(—5)+5= 0。
如果這個人第一秒向東(或向西)走5米,第二秒原地不動,兩秒后這個人
從起點(diǎn)向東(或向西)運(yùn)動了5米。寫成算式就是
5+0=5或(—5)+0= —5。
你能從以上7個算式中發(fā)現(xiàn)有理數(shù)加法的運(yùn)算法則嗎?
三、有理數(shù)加法法則
1. 同號的兩數(shù)相加,取相同的符號,并把絕對值相加.
2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值. 互為相反數(shù)的兩個數(shù)相加得零.
3一個數(shù)同0相加,仍得這個數(shù)。
四、例題
例1 計算(-3)+(-9);(2)(-4·7)+3·
分析:解此題要利用有理數(shù)的加法法則. 解:(1) (-3)+(-9)= -(3+9)= -12:
(2) (-4·7)+3·9=-(4·7-3·9)= -0·8.
例2足球循環(huán)賽中,
紅隊(duì)勝黃隊(duì)4: 1,黃隊(duì)勝藍(lán)隊(duì)1 :0,藍(lán)隊(duì)勝紅隊(duì)1: 0,計算各隊(duì)的凈勝球數(shù)。 解:每個隊(duì)的進(jìn)球總數(shù)記為正數(shù),失球總數(shù)記為負(fù)數(shù),這兩數(shù)的和為這隊(duì)的凈勝球數(shù)。 三場比賽中,紅隊(duì)共進(jìn)4球,失2球,凈勝球數(shù)為
(+4)+(—2)=+(4—2)=2;
黃隊(duì)共進(jìn)2球,失4球,凈勝球數(shù)為
(+2)+(—4)= —(4—2)= ();藍(lán)隊(duì)共進(jìn)()球,失()球,凈勝球數(shù)為
()=()。
五、課堂練習(xí)1.填空:
(1)(-3)+(-5)=;(2)3+(-5)=;
(3)5+(-3)=;(4)7+(-7)=;
(5)8+(-1)=;(6)(-8)+1 =;
(7)(-6)+0 =;(8)0+(-2) =;
2.計算:
(1)(-13)+(-18);(2)20+(-14);
(3)1.7 + 2.8 ;(4)2.3 + (-3.1);
121)+(-);(6)1+(-1.5); 332
12(7)(-3.04)+ 6 ;(8)+(-). 23(5)(-
3.想一想,兩個數(shù)的和一定大于每個加數(shù)嗎?請你舉例說明.
4. 第23頁練習(xí) 1、2。
課堂練習(xí)答案
1.(1)-8; (2)-2; (3)2; (4)0; (5)7; (6)-7;
(7)-6; (8)-2.
2.(1)-31; (2)7; (3)4.5; (4)-0.7; (5)-1 ;
(6)0 ; (7)2.96; (8)-1. 6
3.不一定,例如兩個負(fù)數(shù)的和小于這兩個加數(shù).
課外作業(yè):第31頁1題.
課外選做題
1.判斷題:
(1)兩個負(fù)數(shù)的和一定是負(fù)數(shù);
(2)絕對值相等的兩個數(shù)的和等于零;
(3)若兩個有理數(shù)相加時的和為負(fù)數(shù),這兩個有理數(shù)一定都是負(fù)數(shù);
(4)若兩個有理數(shù)相加時的和為正數(shù),這兩個有理數(shù)一定都是正數(shù).
2.當(dāng)a = -1.6,b = 2.4時,求a+b和a+(-b)的值.
3.已知│a│= 8,│b│= 2.
(1)當(dāng)a、b同號時,求a+b的值;
(2)當(dāng)a、b異號時,求a+b的值.
課外選做題答案
1.(1)對;(2)錯;(3)錯;(4)錯.
2.a(chǎn)+b和a+(-b)的值分別為0.8、-4.
3.(1)當(dāng)a、b同號時,a+b的值為10或-10;