教案是教師為了掌握課堂節(jié)奏預先起草的文字材料,大家在動筆寫教案之前,一定要認真思考自己的教學目標,下面是范文社小編為您分享的二次函數(shù)教案5篇,感謝您的參閱。
二次函數(shù)教案篇1
教學目標
(一)教學知識點
1、經(jīng)歷探索二次函數(shù)與一元二次方程的關系的過程,體會方程與函數(shù)之間的聯(lián)系、
2、理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關系,理解何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根、
3、理解一元二次方程的根就是二次函數(shù)與y=h(h是實數(shù))交點的橫坐標、
(二)能力訓練要求
1、經(jīng)歷探索二次函數(shù)與一元二次方程的關系的過程,培養(yǎng)學生的探索能力和創(chuàng)新精神、
2、通過觀察二次函數(shù)圖象與x軸的交點個數(shù),討論一元二次方程的根的情況,進一步培養(yǎng)學生的數(shù)形結合思想、
3、通過學生共同觀察和討論,培養(yǎng)大家的合作交流意識、
(三)情感與價值觀要求
1、經(jīng)歷探索二次函數(shù)與一元二次方程的關系的過程,體驗數(shù)學活動充滿著探索與創(chuàng)造,感受數(shù)學的嚴謹性以及數(shù)學結論的確定性、
2、具有初步的創(chuàng)新精神和實踐能力、
教學重點
1、體會方程與函數(shù)之間的聯(lián)系、
2、理解何時方程有兩個不等的實根,兩個相等的實數(shù)和沒有實根、
3、理解一元二次方程的根就是二次函數(shù)與y=h(h是實數(shù))交點的橫坐標、
教學難點
1、探索方程與函數(shù)之間的聯(lián)系的過程、
2、理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關系、
教學方法
討論探索法、
教具準備
投影片二張
第一張:(記作§2、8、1a)
第二張:(記作§2、8、1b)
教學過程
Ⅰ、創(chuàng)設問題情境,引入新課
[師]我們學習了一元一次方程kx+b=0(k≠0)和一次函數(shù)y=kx+b(k≠0)后,討論了它們之間的關系、當一次函數(shù)中的函數(shù)值y=0時,一次函數(shù)y=kx+b就轉化成了一元一次方程kx+b=0,且一次函數(shù)y=kx+b(k≠0)的圖象與x軸交點的橫坐標即為一元一次方程kx+b=0的解、
二次函數(shù)教案篇2
【知識與技能】
1.會用描點法畫函數(shù)y=ax2(a>0)的圖象,并根據(jù)圖象認識、理解和掌握其性質(zhì).
2.體會數(shù)形結合的轉化,能用y=ax2(a>0)的圖象和性質(zhì)解決簡單的實際問題.
【過程與方法】
經(jīng)歷探索二次函數(shù)y=ax2(a>0)圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)的經(jīng)驗,培養(yǎng)觀察、思考、歸納的良好思維習慣.
【情感態(tài)度】
通過動手畫圖,同學之間交流討論,達到對二次函數(shù)y=ax2(a>0)圖象和性質(zhì)的真正理解,從而產(chǎn)生對數(shù)學的興趣,調(diào)動學生的積極性.
【教學重點】
1.會畫y=ax2(a>0)的圖象.
2.理解,掌握圖象的性質(zhì).
【教學難點】
二次函數(shù)圖象及性質(zhì)探究過程和方法的體會教學過程.
一、情境導入,初步認識
問題1 請同學們回憶一下一次函數(shù)的圖象、反比例函數(shù)的圖象的特征是什么?二次函數(shù)圖象是什么形狀呢?
問題2 如何用描點法畫一個函數(shù)圖象呢?
【教學說明】
①略;
②列表、描點、連線.
二、思考探究,獲取新知
探究1 畫二次函數(shù)y=ax2(a>0)的圖象.
畫二次函數(shù)y=ax2的圖象.
【教學說明】
①要求同學們?nèi)巳藙邮?按“列表、描點、連線”的步驟畫圖y=x2的圖象,同學們畫好后相互交流、展示,表揚畫得比較規(guī)范的同學.
②從列表和描點中,體會圖象關于y軸對稱的特征.
③強調(diào)畫拋物線的三個誤區(qū).
誤區(qū)一:用直線連結,而非光滑的曲線連結,不符合函數(shù)的變化規(guī)律和發(fā)展趨勢.
誤區(qū)二:并非對稱點,存在漏點現(xiàn)象,導致拋物線變形.
誤區(qū)三:忽視自變量的取值范圍,拋物線要求用平滑曲線連點的同時,還需要向兩旁無限延伸,而并非到某些點停止.
二次函數(shù)教案篇3
教學目標:
1. 1. 理解二次函數(shù)的意義;會用描點法畫出函數(shù)y=ax2的圖象,知道拋物線的有關概念;
2. 2. 通過變式教學,培養(yǎng)學生思維的敏捷性、廣闊性、深刻性;
3. 3. 通過二次函數(shù)的教學讓學生進一步體會研究函數(shù)的一般方法;加深對于數(shù)形結合思想認識。
教學重點:二次函數(shù)的意義;會畫二次函數(shù)圖象。
教學難點:描點法畫二次函數(shù)y=ax2的圖象,數(shù)與形相互聯(lián)系。
教學過程設計:
一. 創(chuàng)設情景、建模引入
我們已學習了正比例函數(shù)及一次函數(shù),現(xiàn)在來看看下面幾個例子:
1.寫出圓的半徑是r(cm),它的面積s(cm2)與r的關系式
答:s=πr2. ①
2.寫出用總長為60m的籬笆圍成矩形場地,矩形面積s(m2)與矩形一邊長l(m)之間的關系
答:s=l(30-l)=30l-l2 ②
分析:①②兩個關系式中s與r、l之間是否存在函數(shù)關系?
s是否是r、l的一次函數(shù)?
由于①②兩個關系式中s不是r、l的一次函數(shù),那么s是r、l的什么函數(shù)呢?這樣的函數(shù)大家能不能猜想一下它叫什么函數(shù)呢?
答:二次函數(shù)。
這一節(jié)課我們將研究二次函數(shù)的有關知識。(板書課題)
二. 歸納抽象、形成概念
一般地,如果y=ax2+bx+c(a,b,c是常數(shù),a≠0) ,
那么,y叫做x的二次函數(shù).
注意:(1)必須a≠0,否則就不是二次函數(shù)了.而b,c兩數(shù)可以是零.(2) 由于二次函數(shù)的解析式是整式的形式,所以x的取值范圍是任意實數(shù).
練習:1.舉例子:請同學舉一些二次函數(shù)的例子,全班同學判斷是否正確。
2.出難題:請同學給大家出示一個函數(shù),請同學判斷是否是二次函數(shù)。
(若學生考慮不全,教師給予補充。如: ; ; ; 的形式。)
(通過學生觀察、歸納定義加深對概念的理解,既培養(yǎng)了學生的實踐能力,有培養(yǎng)了學生的探究精神。并通過開放性的練習培養(yǎng)學生思維的發(fā)散性、開放性。題目用了一些人性化的詞語,也增添了課堂的趣味性。)
由前面一次函數(shù)的學習,我們已經(jīng)知道研究函數(shù)一般應按照定義、圖象、性質(zhì)、求解析式幾個方面進行研究。二次函數(shù)我們也會按照定義、圖象、性質(zhì)、求解析式幾個方面進行研究。
(在這里指出學習函數(shù)的一般方法,旨在及時進行學法指導;并將此方法形成技能,以指導今后的學習;進一步培養(yǎng)終身學習的能力。)
三. 嘗試模仿、鞏固提高
讓我們先從最簡單的二次函數(shù)y=ax2入手展開研究
1. 1. 嘗試:大家知道一次函數(shù)的圖象是一條直線,那么二次函數(shù)的圖象是什么呢?
請同學們畫出函數(shù)y=x2的圖象。
(學生分別畫圖,教師巡視了解情況。)
二次函數(shù)教案篇4
教學設計
一 教學設計思路
通過小球飛行高度問題展示二次函數(shù)與一元二次方程的聯(lián)系。然后進一步舉例說明,從而得出二次函數(shù)與一元二次方程的關系。最后通過例題介紹用二次函數(shù)的圖象求一元二次方程的根的方法。
二 教學目標
1 知識與技能
(1).經(jīng)歷探索函數(shù)與一元二次方程的關系的過程,體會方程與函數(shù)之間的聯(lián)系??偨Y出二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關系,表述何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根.
(2).會利用圖象法求一元二次方程的近似解。
2 過程與方法
經(jīng)歷探索二次函數(shù)與一元二次方程的關系的過程,體會方程與函數(shù)之間的聯(lián)系.
三 情感態(tài)度價值觀
通過觀察二次函數(shù)圖象與x軸的交點個數(shù),討論一元二次方程的根的情況培養(yǎng)學生自主探索意識,從中體會事物普遍聯(lián)系的觀點,進一步體會數(shù)形結合思想.
四 教學重點和難點
重點:方程與函數(shù)之間的聯(lián)系,會利用二次函數(shù)的圖象求一元二次方程的近似解。
難點:二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關系。
五 教學方法
討論探索法
六 教學過程設計
(一)問題的提出與解決
問題 如圖,以20m/s的速度將小球沿與地面成30角的方向擊出時,球的飛行路線將是一條拋物線。如果不考慮空氣阻力,球的飛行高度h(單位:m)與飛行時間t(單位:s)之間具有關系
h=20t5t2。
考慮以下問題
(1)球的飛行高度能否達到15m?如能,需要多少飛行時間?
(2)球的飛行高度能否達到20m?如能,需要多少飛行時間?
(3)球的飛行高度能否達到20.5m?為什么?
(4)球從飛出到落地要用多少時間?
分析:由于球的飛行高度h與飛行時間t的關系是二次函數(shù)
h=20t-5t2。
所以可以將問題中h的值代入函數(shù)解析式,得到關于t的一元二次方程,如果方程有合乎實際的解,則說明球的飛行高度可以達到問題中h的值:否則,說明球的飛行高度不能達到問題中h的值。
解:(1)解方程 15=20t5t2。 t24t+3=0。 t1=1,t2=3。
當球飛行1s和3s時,它的高度為15m。
(2)解方程 20=20t-5t2。 t2-4t+4=0。 t1=t2=2。
當球飛行2s時,它的高度為20m。
(3)解方程 20.5=20t-5t2。 t2-4t+4.1=0。
因為(-4)2-44.10。所以方程無解。球的飛行高度達不到20.5m。
(4)解方程 0=20t-5t2。 t2-4t=0。 t1=0,t2=4。
當球飛行0s和4s時,它的高度為0m,即0s時球從地面飛出。4s時球落回地面。
由學生小組討論,總結出二次函數(shù)與一元二次方程的解有什么關系?
例如:已知二次函數(shù)y=-x2+4x的值為3。求自變量x的值。
分析 可以解一元二次方程-x2+4x=3(即x2-4x+3=0) 。反過來,解方程x2-4x+3=0又可以看作已知二次函數(shù)y=x2-4+3的值為0,求自變量x的值。
一般地,我們可以利用二次函數(shù)y=ax2+bx+c深入討論一元二次方程ax2+bx+c=0。
(二)問題的討論
二次函數(shù)(1)y=x2+x-2;
(2) y=x2-6x+9;
(3) y=x2-x+0。
的圖象如圖26.2-2所示。
(1)以上二次函數(shù)的圖象與x軸有公共點嗎?如果有,有多少個交點,公共點的橫坐標是多少?
(2)當x取公共點的橫坐標時,函數(shù)的值是多少?由此,你能得出相應的一元二次方程的根嗎?
先畫出以上二次函數(shù)的圖象,由圖像學生展開討論,在老師的引導下回答以上的問題。
可以看出:
(1)拋物線y=x2+x-2與x軸有兩個公共點,它們的橫坐標是-2,1。當x取公共點的橫坐標時,函數(shù)的值是0。由此得出方程x2+x-2=0的根是-2,1。
(2)拋物線y=x2-6x+9與x軸有一個公共點,這點的橫坐標是3。當x=3時,函數(shù)的值是0。由此得出方程x2-6x+9=0有兩個相等的實數(shù)根3。
(3)拋物線y=x2-x+1與x軸沒有公共點, 由此可知,方程x2-x+1=0沒有實數(shù)根。
總結:一般地,如果二次函數(shù)y= 的圖像與x軸相交,那么交點的橫坐標就是一元二次方程 =0的根。
(三)歸納
一般地,從二次函數(shù)y=ax2+bx+c的圖象可知,
(1)如果拋物線y=ax2+bx+c與x軸有公共點,公共點的橫坐標是x0,那么當x=x0時,函數(shù)的值是0,因此x=x0就是方程ax2+bx+c=0的一個根。
(2)二次函數(shù)的圖象與x軸的位置關系有三種:沒有公共點,有一個公共點,有兩個公共點。這對應著一元二次方程根的三種情況:沒有實數(shù)根,有兩個相等的實數(shù)根,有兩個不等的實數(shù)根。
由上面的結論,我們可以利用二次函數(shù)的圖象求一元二次方程的根。由于作圖或觀察可能存在誤差,由圖象求得的根,一般是近似的。
(四)例題
例 利用函數(shù)圖象求方程x2-2x-2=0的實數(shù)根(精確到0.1)。
解:作y=x2-2x-2的圖象(如圖),它與x軸的公共點的橫坐標大約是-0.7,2.7。
所以方程x2-2x-2=0的實數(shù)根為x1-0.7,x22.7。
七 小結
二次函數(shù)的圖象與x軸的位置關系有三種:沒有公共點,有一個公共點,有兩個公共點。這對應著一元二次方程根的三種情況:沒有實數(shù)根,有兩個相等的實數(shù)根,有兩個不等的實數(shù)根。
?
八 板書設計
用函數(shù)觀點看一元二次方程
拋物線y=ax2+bx+c與方程ax2+bx+c=0的解之間的關系
例題
二次函數(shù)教案篇5
二次函數(shù)的圖象與性質(zhì)
1.畫出函數(shù)=2x2-3x的圖象,說明這個函數(shù)具有哪些性質(zhì)。
2. 通過配方,寫出下列拋物線的開口方向、對稱軸和頂點坐標。
(1)=3x2+2x;
(2)=-x2-2x
( 3)=-2x2+8x-8 (4)=12x2-4x+3
板書設計
1、畫函數(shù)=ax2+bx+c(a≠0)的圖象。
(列表時,應以對稱軸為中心,對稱地選取自變量的值,求出相應的函數(shù)值。)
2、二次函數(shù)=ax2+bx+c(a≠0),
當a>0時,開口向上,當a<0時,開口向下。
對稱軸是x=-b2a,頂點坐標是(-b2a,4ac-b24a)
(最值與拋物線的開口方向及頂點的縱坐標有關。)
課后反思
在本節(jié)教學中,教學仍從回顧上節(jié)人手,使學生掌握二次函數(shù) 是由 如何平移得來,并熟練掌握二次函數(shù) 圖象的開口方向、對稱軸和頂點坐標及有關性質(zhì)。在此基礎上,引導學生思考二次函數(shù)=ax2+bx+c(a≠0)圖像的開口方向、對稱軸和頂點坐標?這樣激起學生的求知欲望,能進行有目的探究活動,學生變被動為主動,學習方式發(fā)生了改變。這節(jié)課學生既動手又動腦,體驗到學習知識的樂趣。